1. 数组的创建与初始化
数组的创建是所有操作的基础,NumPy提供了多种方式来初始化数组。
import numpy as np
# 创建全0数组
zeros = np.zeros((3, 4)) # 3行4列全0矩阵
# 创建全1数组
ones = np.ones((2, 5)) # 2行5列全1矩阵
# 创建等差数列
linspace = np.linspace(0, 10, 5) # 从0到10,分成5个等分
# 创建随机数数组
random = np.random.rand(3, 3) # 3x3均匀分布随机数
# 创建空数组(未初始化)
empty = np.empty(5) # 长度为5的空数组
关键点解析:
- np.zeros()和np.ones():常用于初始化结果数组。
- np.linspace():适用于生成等间隔样本。
- np.random.rand():随机数生成是数据科学的基础。
2. 数组的索引与切片
数组的索引和切片是数据访问的核心操作。
arr = np.array([1, 2, 3, 4, 5])
# 单元素索引
print(arr[2]) # 输出:3
# 切片操作
print(arr[1:4]) # 输出:[2 3 4]
# 多维数组切片
mat