NumPy 实战,高频操作助你轻松搞定数据分析

1. 数组的创建与初始化

数组的创建是所有操作的基础,NumPy提供了多种方式来初始化数组。

import numpy as np

# 创建全0数组
zeros = np.zeros((3, 4))  # 3行4列全0矩阵

# 创建全1数组
ones = np.ones((2, 5))    # 2行5列全1矩阵

# 创建等差数列
linspace = np.linspace(0, 10, 5)  # 从0到10,分成5个等分

# 创建随机数数组
random = np.random.rand(3, 3)  # 3x3均匀分布随机数

# 创建空数组(未初始化)
empty = np.empty(5)  # 长度为5的空数组

    关键点解析:

    • np.zeros()和np.ones():常用于初始化结果数组。
    • np.linspace():适用于生成等间隔样本。
    • np.random.rand():随机数生成是数据科学的基础。
    2. 数组的索引与切片

    数组的索引和切片是数据访问的核心操作。

    arr = np.array([1, 2, 3, 4, 5])
    
    # 单元素索引
    print(arr[2])  # 输出:3
    
    # 切片操作
    print(arr[1:4])  # 输出:[2 3 4]
    
    # 多维数组切片
    mat
    评论
    添加红包

    请填写红包祝福语或标题

    红包个数最小为10个

    红包金额最低5元

    当前余额3.43前往充值 >
    需支付:10.00
    成就一亿技术人!
    领取后你会自动成为博主和红包主的粉丝 规则
    hope_wisdom
    发出的红包

    打赏作者

    奔向理想的星辰大海

    你的鼓励将是我创作的最大动力

    ¥1 ¥2 ¥4 ¥6 ¥10 ¥20
    扫码支付:¥1
    获取中
    扫码支付

    您的余额不足,请更换扫码支付或充值

    打赏作者

    实付
    使用余额支付
    点击重新获取
    扫码支付
    钱包余额 0

    抵扣说明:

    1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
    2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

    余额充值