题目背景
Farmer John 被选为他们镇的镇长!他其中一个竞选承诺就是在镇上建立起互联网,并连接到所有的农场。当然,他需要你的帮助。
题目描述
FJ 已经给他的农场安排了一条高速的网络线路,他想把这条线路共享给其他农场。为了用最小的消费,他想铺设最短的光纤去连接所有的农场。
你将得到一份各农场之间连接费用的列表,你必须找出能连接所有农场并所用光纤最短的方案。每两个农场间的距离不会超过 105105。
输入格式
第一行农场的个数 𝑁N(3≤𝑁≤1003≤N≤100)。
接下来是一个 𝑁×𝑁的矩阵,表示每个农场之间的距离。理论上,他们是 𝑁 行,每行由 𝑁 个用空格分隔的数组成,实际上,由于每行 8080 个字符的限制,因此,某些行会紧接着另一些行。当然,对角线将会是 00,因为不会有线路从第 𝑖个农场到它本身。
输出格式
只有一个输出,其中包含连接到每个农场的光纤的最小长度。
输入输出样例
输入 #1复制
4 0 4 9 21 4 0 8 17 9 8 0 16 21 17 16 0
输出 #1复制
28
说明/提示
题目翻译来自NOCOW。
USACO Training Section 3.1
这一题我所提供的代码示例基于 Prim 算法的最小生成树解法。
#include <iostream>
#include <vector>
#include <climits>
using namespace std;
int findMinDist(vector<int>& dist, vector<bool>& included, int N) {
int minDist = INT_MAX;
int minDistIdx = -1;
for (int i = 0; i < N; i++) {
if (!included[i] && dist[i] < minDist) {
minDist = dist[i];
minDistIdx = i;
}
}
return minDistIdx;
}
int calculateMinLength(vector<vector<int>>& graph, int N) {
vector<int> dist(N, INT_MAX);
vector<bool> included(N, false);
dist[0] = 0;
for (int i = 0; i < N - 1; i++) {
int u = findMinDist(dist, included, N);
included[u] = true;
for (int v = 0; v < N; v++) {
if (graph[u][v] && !included[v] && graph[u][v] < dist[v]) {
dist[v] = graph[u][v];
}
}
}
int minLength = 0;
for (int i = 0; i < N; i++) {
minLength += dist[i];
}
return minLength;
}
int main() {
int N;
cin >> N;
vector<vector<int>> graph(N, vector<int>(N));
for (int i = 0; i < N; i++) {
for (int j = 0; j < N; j++) {
cin >> graph[i][j];
}
}
int minLength = calculateMinLength(graph, N);
cout << minLength << endl;
return 0;
}