c++题目_P1044 [NOIP2003 普及组] 栈

# [NOIP2003 普及组] 栈

## 题目背景

栈是计算机中经典的数据结构,简单的说,栈就是限制在一端进行插入删除操作的线性表。

栈有两种最重要的操作,即 pop(从栈顶弹出一个元素)和 push(将一个元素进栈)。

栈的重要性不言自明,任何一门数据结构的课程都会介绍栈。宁宁同学在复习栈的基本概念时,想到了一个书上没有讲过的问题,而他自己无法给出答案,所以需要你的帮忙。

## 题目描述

宁宁考虑的是这样一个问题:一个操作数序列,$1,2,\ldots ,n$(图示为 1 到 3 的情况),栈 A 的深度大于 $n$。

现在可以进行两种操作,

1. 将一个数,从操作数序列的头端移到栈的头端(对应数据结构栈的 push 操作)
2. 将一个数,从栈的头端移到输出序列的尾端(对应数据结构栈的 pop 操作)

使用这两种操作,由一个操作数序列就可以得到一系列的输出序列,下图所示为由 `1 2 3` 生成序列 `2 3 1` 的过程。

(原始状态如上图所示)

你的程序将对给定的 $n$,计算并输出由操作数序列 $1,2,\ldots,n$ 经过操作可能得到的输出序列的总数。

## 输入格式

输入文件只含一个整数 $n$($1 \leq n \leq 18$)。

## 输出格式

输出文件只有一行,即可能输出序列的总数目。

## 样例 #1

### 样例输入 #1

```
3
```

### 样例输出 #1

```
5
```

## 提示

**【题目来源】**

NOIP 2003 普及组第三题

具体来说,使用一个递推公式来计算 h[i],其中 h[i] 表示在操作数序列为 1,2,...,i 的情况下,可以得到的输出序列的总数目。

递推公式为 h[i] = h[i-1] * (4*i-2) / (i+1),其中 h[i-1] 表示在操作数序列为 1,2,...,i-1 的情况下,可以得到的输出序列的总数目。

最终的答案就是 h[n] 的值。

这段代码的时间复杂度为 O(n),比动态规划的解法更高效

#include<bits/stdc++.h>
using namespace std;
long n,h[5001];
int main(){
	cin>>n;
	h[0]=1;
	for(int i=1;i<=n;i++){
		h[i]=h[i-1]*(4*i-2)/(i+1);
	}
	cout<<h[n];
	return 0;
}

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值