NLP赛事:Task4 基于深度学习的⽂本分类

FastText

FastText是一种典型的深度学习词向量的表示方法,它非常简单通过Embedding层将单词映射到稠密空间,然后将句子中所有的单词在Embedding空间中进行平均,进而完成分类操作。
所以FastText是一个三层的神经网络,输入层、隐含层和输出层。

在这里插入图片描述

FastText网络结构
from __future__ import unicode_literals
from keras.models import Sequential
from keras.layers import Embedding
from keras.layers import GlobalAveragePooling1D
from keras.layers import Dense


VOCAB_SIZE = 2000
EMBEDDING_DIM = 100
MAX_WORDS = 500
CLASS_NUM = 5


def build_fastText():
    model = Sequential()
    model.add(Embedding(VOCAB_SIZE,EMBEDDING_DIM,input_length=MAX_WORDS))
    model.add(GlobalAveragePooling1D())
    model.add(Dense(CLASS_NUM,activation = 'softmax'))
    model.compile(loss='categorical_crossentropy',optimizer='SGD',metrics=['accuracy'])
    return model


if __name__ == "__main__":
    model = build_fastText()
    print(model.summary())

在这里插入图片描述

import pandas as pd
import fasttext
from sklearn.metrics import f1_score


# 转换为FastText需要的格式
train_df = pd.read_csv('train_set.csv', sep='\t', nrows=15000)
train_df['label_ft'] = '__label__' + train_df['label'].astype(str)
train_df[['text','label_ft']].iloc[:-5000].to_csv('train.csv', index=None, header=None, sep='\t')


model = fasttext.train_supervised('train.csv', lr=1.0, wordNgrams=2, verbose=2, minCount=1, epoch=25, loss="hs")
val_pred = [model.predict(x)[0][0].split('__')[-1] for x in train_df.iloc[-5000:]['text']]


print(f1_score(train_df['label'].values[-5000:].astype(str), val_pred, average='macro'))

output:
0.82
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值