一、题目
我们有一些二维坐标,如 "(1, 3)" 或 "(2, 0.5)",然后我们移除所有逗号,小数点和空格,得到一个字符串S。返回所有可能的原始字符串到一个列表中。
原始的坐标表示法不会存在多余的零,所以不会出现类似于"00", "0.0", "0.00", "1.0", "001", "00.01"或一些其他更小的数来表示坐标。此外,一个小数点前至少存在一个数,所以也不会出现“.1”形式的数字。
最后返回的列表可以是任意顺序的。而且注意返回的两个数字中间(逗号之后)都有一个空格。
来源:力扣
二、思路
将字符串分割成两部分, 其所有的可能性无非就是枚举切割点,这里使用了一个 for 循环。
subset(s) 的功能是在 s 的第 0 位后,第一位后,第 n - 2 位后插入一个小数点 ".",其实就是构造一个有效的数字而已。
因此 x 和 y 就是分割形成的两部分的有效分割集合,答案自然就是 x 和 y 的笛卡尔积。
三、代码
class Solution:
# "123" => ["1.23", "12.3", "123"]
def subset(self, s: str):
ans = []
# 带小数点的
for i in range(1, len(s)):
# 不允许 00.111, 0.0,01.1,1.0
if s[0] == '0' and i > 1:
continue
if s[-1] == '0':
continue
ans.append(s[:i] + "." + s[i:])
# 不带小数点的(不允许 001)
if s == '0' or not s.startswith('0'):
ans.append(s)
return ans
def ambiguousCoordinates(self, s: str) -> List[str]:
ans = []
s = s[1:-1]
for i in range(1, len(s)):
x = self.subset(s[:i])
y = self.subset(s[i:])
for i in x:
for j in y:
ans.append('(' + i + ', ' + j + ')')
return ans