斐波那契数列与组合数的基本数理关系(王杰林)

本次给出这个定理,主要是为了完善“杰林码”的部分数理原理。

斐波那契数列的定义:
斐波那契数列是满足递推关系式:
{ F 1 = F 2 = 1                                     F n = F n − 1 + F n − 2 , n = 3 , 4 , 5 , …   \left\{ \begin{matrix} F_{1} = F_{2} = 1\ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \\ F_{n} = F_{n - 1} + F_{n - 2},n = 3,4,5,\ldots \\ \end{matrix} \right.\ {F1=F2=1                                   Fn=Fn1+Fn2,n=3,4,5, 

的数列 { F n } \{ F_{n}\} {Fn}

定理1: F n = ∑ m C n − m − 1 m ( m = 0 , 1 , 2 , … ; 2 m ≤ n − 1 ) F_{n} = \sum_{m}^{}C_{n - m - 1}^{m}(m = 0,1,2,\ldots;2m \leq n -1) Fn=mCnm1m(m=0,1,2,;2mn1)

证明:将 F n = ∑ m C n − m − 1 m F_{n} = \sum_{m}^{}C_{n - m - 1}^{m} Fn=mCnm1m F n + 1 = ∑ m C n − m m F_{n + 1} = \sum_{m}^{}C_{n - m}^{m} Fn+1=mCnmm F n + 2 = ∑ m C n − m + 1 m F_{n + 2} = \sum_{m}^{}C_{n - m + 1}^{m} Fn+2=mCnm+1m展开可得:

F n = ∑ m C n − m − 1 m = C n − 1 0 + C n − 2 1 + C n − 3 2 + … + C n / 2 n / 2 − 1 F_{n} = \sum_{m}^{}C_{n - m - 1}^{m} = C_{n - 1}^{0} + C_{n - 2}^{1} + C_{n - 3}^{2} + \ldots + C_{n/2}^{n/2 - 1} Fn=mCnm1m=Cn10+Cn21+Cn32++Cn/2n/21

F n + 1 = ∑ m C n − m m = C n 0 + C n − 1 1 + C n − 2 2 + … + C n / 2 n / 2 F_{n + 1} = \sum_{m}^{}C_{n - m}^{m} = C_{n}^{0} + C_{n - 1}^{1} + C_{n - 2}^{2} + \ldots + C_{n/2}^{n/2} Fn+1=mCnmm=Cn0+Cn11+Cn22++Cn/2n/2

F n + 2 = ∑ m C n − m + 1 m = C n + 1 0 + C n 1 + C n − 1 2 + … + C n / 2 + 1 n / 2 F_{n + 2} = \sum_{m}^{}C_{n - m + 1}^{m} = C_{n + 1}^{0} + C_{n}^{1} + C_{n - 1}^{2} + \ldots + C_{n/2 + 1}^{n/2} Fn+2=mCnm+1m=Cn+10+Cn1+Cn12++Cn/2+1n/2

因为 C n − 1 m = C n − 2 m − 1 + C n − 2 m C_{n - 1}^{m} = C_{n - 2}^{m - 1} + C_{n - 2}^{m} Cn1m=Cn2m1+Cn2m,且 C n 0 = C n + 1 0 = 1 C_{n}^{0} = C_{n+ 1}^{0} = 1 Cn0=Cn+10=1,所以

C n − 1 0 + C n − 1 1 = C n 1 C_{n - 1}^{0} + C_{n - 1}^{1} = C_{n}^{1} Cn10+Cn11=Cn1

C n − 2 1 + C n − 2 2 = C n − 1 2 C_{n - 2}^{1} + C_{n - 2}^{2} = C_{n - 1}^{2} Cn21+Cn22=Cn12

C n − 3 2 + C n − 3 3 = C n − 2 3 C_{n - 3}^{2} + C_{n - 3}^{3} = C_{n - 2}^{3} Cn32+Cn33=Cn23

… \ldots

C n / 2 n / 2 − 1 + C n / 2 n / 2 = C n / 2 + 1 n / 2 C_{n/2}^{n/2 - 1} + C_{n/2}^{n/2} = C_{n/2 + 1}^{n/2} Cn/2n/21+Cn/2n/2=Cn/2+1n/2

F n + 1 + F n = C n + 1 0 + C n 1 + C n − 1 2 + C n − 2 3 + … + C n / 2 + 1 n / 2 = F n + 2 F_{n + 1} + F_{n} = C_{n + 1}^{0} + C_{n}^{1} + C_{n - 1}^{2} + C_{n -2}^{3} + \ldots + C_{n/2 + 1}^{n/2} = F_{n + 2} Fn+1+Fn=Cn+10+Cn1+Cn12+Cn23++Cn/2+1n/2=Fn+2,且 F ( 1 ) = C 0 0 = 1 F\left( 1 \right) =C_{0}^{0} = 1 F(1)=C00=1 F ( 2 ) = C 2 0 = 1 F\left( 2 \right) = C_{2}^{0} = 1 F(2)=C20=1。所以 F ( n ) = ∑ m C n − m − 1 m F\left( n \right)= \sum_{m}^{}C_{n - m - 1}^{m} F(n)=mCnm1m满足斐波那契的定义。
同理可以给出基于组合数的定理:

定理2: ∑ m C n − m + 1 m = ∑ m C n − m m + ∑ m C n − m − 1 m \sum_{m}^{}C_{n - m + 1}^{m} = \sum_{m}^{}C_{n - m}^{m} +\sum_{m}^{}C_{n - m - 1}^{m} mCnm+1m=mCnmm+mCnm1m
证明:略

定理1在“杰林码”信道检错纠错算法中的应用:

设二进制序列 X X X长度为 n n n,其中符号1的个数为 m m m。因连续 n − m n - m nm个符号0有 n − m + 1 n - m + 1 nm+1个间隔,所以将 m m m个符号1插入间隔位置的组合数为 C n − m + 1 m C_{n- m + 1}^{m} Cnm+1m,于是存在 C n − m + 1 m C_{n - m +1}^{m} Cnm+1m个序列 X X X满足“序列中连续符号1的个数最多为 1 1 1”,则总的序列数有:

E n = ∑ m C n − m + 1 m E_{n} = \sum_{m}^{}C_{n - m + 1}^{m} En=mCnm+1m(1)

n ≥ 1 n \geq 1 n1时, E n = F n + 2 E_{n} = F_{n +2} En=Fn+2。由于序列 X X X满足“序列中连续符号1的个数最多为 1 1 1”,当序列 X X X通过信道传输, Y Y Y为接收到的二进制序列,若 Y Y Y中任意位置出现了“11”,则说明数据传输发生了错误。同时,这类序列利用我的加权概率模型实现很好的无损压缩。

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值