LeetCode 第50题:Pow(x, n)

这篇博客介绍了LeetCode第50题: Pow(x, n) ,要求实现一个计算 x 的 n 次幂的函数。文章详细讲解了解题思路,重点介绍了快速幂算法,包括递归和迭代两种实现方式,并通过具体例子解析代码逻辑,帮助读者理解如何在O(log n)的时间复杂度内高效求解幂次问题。" 105076584,5692795,使用gdisk管理GPT分区,"['Linux系统管理', '磁盘分区', 'GPT', '硬盘工具']
摘要由CSDN通过智能技术生成

大家好,今天我们来聊聊一个经典的数学题目——LeetCode第50题:Pow(x, n)。这个题目要求我们实现一个函数 pow(x, n),计算 xn 次幂。虽然看似简单,但如何高效地计算幂次却蕴藏着不少巧妙的算法。准备好了吗?让我们一起探索这个有趣的问题吧!

题目描述

实现 pow(x, n),即计算 xn 次幂函数(即 x^n)。

示例:

输入: x = 2.00000, n = 10
输出: 1024.00000

输入: x = 2.10000, n = 3
输出: 9.26100

输入: x = 2.00000, n = -2
输出: 0.25000
解释: 2^-2 = 1/(2^2) = 1/4 = 0.25

解题思路

我们都知道,直接用循环来计算幂次会非常简单,但时间复杂度是 O(n),对于大数运算效率极低。为了提高效率,我们需要借助更高效的算法——快速幂算法

快速幂算法</
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

Gemini技术窝

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值