大数据理论

大数据巨量数据集合

        指无法在一定时间范围内用常规软件工具进行捕捉、管理和处理的数据集合,是需要新处理模式才能具有更强的决策力、洞察发现力和流程优化能力的海量、高增长率和多样化的信息资产。

        在维克托·迈尔-舍恩伯格及肯尼斯·库克耶编写的《大数据时代 [2]  中大数据指不用随机分析法(抽样调查)这样捷径,而采用所有数据进行分析处理。大数据的5V特点(IBM提出):Volume(大量)、Velocity(高速)、Variety(多样)、Value(低价值密度)、Veracity(真实性)。


 最小的基本单位是bit,按顺序给出所有单位:bitByte、KB、MB、GB、TB、PB、EB、ZB、YB、BB、NB、DB。

特征

容量(Volume):数据的大小决定所考虑的数据的价值和潜在的信息
种类(Variety):数据类型的多样性
速度(Velocity):指获得数据的速度
可变性(Variability):妨碍了处理和有效地管理数据的过程。 
真实性(Veracity):数据的质量 
复杂性(Complexity):数据量巨大,来源多渠道
价值(value):合理运用大数据,以低成本创造高价值

趋势

趋势一:数据的资源化
趋势二:与云计算的深度结合
趋势三:科学理论的突破
趋势四:数据科学和数据联盟的成立
趋势五:数据泄露泛滥
趋势六:数据管理成为核心竞争力
趋势七:数据质量是BI(商业智能)成功的关键
趋势八:数据生态系统复合化程度加强


阅读更多 登录后自动展开
想对作者说点什么? 我来说一句

没有更多推荐了,返回首页