题目描述
译自 JOI 2014 Final T2「IOI 饅頭」
有 M 种互不相同的馒头各一个,第 i 个馒头卖 Pi元。
有 N 个包装盒,第 j 个包装盒最多能装 Ci 个馒头,买第 j 个包装盒的花费为 Ej 元。要求只能将一些馒头放进包装盒中打包出售,不能零售,当然也可以不出售某些馒头(卖剩的馒头被出题人吃了,出题人还吃得津津有味~)。售出一盒馒头得到的利润为盒内所有馒头的价格减去包装盒的价格。
现在买下(这 N 个包装盒)其中的一些包装盒(也可以不买,还可以全买),将馒头打包出售,求最大可能利润。
输入格式
第一行两个正整数M,N ,意义如题目描述;
接下来 M 行,每行一个正整数Pi ,表示第 i 个馒头的价格;
接下来 N 行,每行两个正整数Cj,Ej ,表示第 j 个包装盒最多能装 Cj 个馒头,花费 Ej 元。
输出格式
一行一个整数,表示最大可能利润。
样例输入
4 3
180
160
170
190
2 100
3 120
4 250
样例输出
480
样例说明
在本例中,我们选择第一、第二个包装盒,第一个包装盒装第 1,2个馒头,第二个包装盒装第 3,4 个馒头。第一盒馒头的利润是180+160-100=240 元,第二盒馒头的利润是 170+190-120=240 元,因此总利润为 240+240=480元。
#include <bits/stdc++.h>
using namespace std;
const int maxn=1005;
int n,m;
int a[1001][1001],f[1001][1001];
void print(int i, int j) {
if(j==0) return;
for(int k=0; k<=i-j; k++)
if(f[i][j]==f[j+k-1][j-1]+a[j][j+k]) {
print(j+k-1,j-1);
printf("%d ",j+k);
break;
}
}
int main() {
scanf("%d%d",&n,&m);
for(int i=1; i<=n; i++) {
for(int j=1; j<=m; j++) {
scanf("%d",&a[i][j]);
}
}
for(int i=1; i<=n; i++) f[i][i]=f[i-1][i-1]+a[i][i];
for(int i=1; i<=m; i++) {
for(int j=1; j<=n; j++) {
f[i][j]=-0x3f3f3f3f;
for(int k=0; k<=i-j; k++) {
f[i][j]=max(f[i][j],f[j+k-1][j-1]+a[j][j+k]);
}
}
}
printf("%d\n",f[m][n]);
print(m,n);
return 0;
}