IOI-2014馒头

题目描述
译自 JOI 2014 Final T2「IOI 饅頭」

有 M 种互不相同的馒头各一个,第 i 个馒头卖 Pi元。

有 N 个包装盒,第 j 个包装盒最多能装 Ci 个馒头,买第 j 个包装盒的花费为 Ej 元。要求只能将一些馒头放进包装盒中打包出售,不能零售,当然也可以不出售某些馒头(卖剩的馒头被出题人吃了,出题人还吃得津津有味~)。售出一盒馒头得到的利润为盒内所有馒头的价格减去包装盒的价格。

现在买下(这 N 个包装盒)其中的一些包装盒(也可以不买,还可以全买),将馒头打包出售,求最大可能利润。

输入格式
第一行两个正整数M,N ,意义如题目描述;
接下来 M 行,每行一个正整数Pi ,表示第 i 个馒头的价格;
接下来 N 行,每行两个正整数Cj,Ej ,表示第 j 个包装盒最多能装 Cj 个馒头,花费 Ej 元。

输出格式
一行一个整数,表示最大可能利润。

样例输入
4 3
180
160
170
190
2 100
3 120
4 250

样例输出
480

样例说明
在本例中,我们选择第一、第二个包装盒,第一个包装盒装第 1,2个馒头,第二个包装盒装第 3,4 个馒头。第一盒馒头的利润是180+160-100=240 元,第二盒馒头的利润是 170+190-120=240 元,因此总利润为 240+240=480元。

#include <bits/stdc++.h>
using namespace std;
const int maxn=1005;
int n,m;
int a[1001][1001],f[1001][1001];
void print(int i, int j) {
    if(j==0) return;
    for(int k=0; k<=i-j; k++)
        if(f[i][j]==f[j+k-1][j-1]+a[j][j+k]) {
            print(j+k-1,j-1);
            printf("%d ",j+k);
            break;
        }
}

int main() {
    scanf("%d%d",&n,&m);
    for(int i=1; i<=n; i++) {
        for(int j=1; j<=m; j++) {
            scanf("%d",&a[i][j]);
        }
    }
    for(int i=1; i<=n; i++) f[i][i]=f[i-1][i-1]+a[i][i];
    for(int i=1; i<=m; i++) {
        for(int j=1; j<=n; j++) {
            f[i][j]=-0x3f3f3f3f;
            for(int k=0; k<=i-j; k++) {
                f[i][j]=max(f[i][j],f[j+k-1][j-1]+a[j][j+k]);
            }
        }
    }
    printf("%d\n",f[m][n]);
    print(m,n);
    return 0;
}

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值