机器学习
文章平均质量分 95
A_Carman
这个作者很懒,什么都没留下…
展开
-
图解反向传播算法
图解反向传播算法在训练神经网络时,前向传播是网络从接收输入 xxx 直到它产生一个标量代价函数 J(θ)J(\theta)J(θ) ,反向传播(BP)则是代价函数的信息通过网络向后流动并计算梯度。计算图可以准确地描述网络的前向和后向过程,而且代码实现图这种数据结构后,可以利用到图的遍历、拓扑排序等经典算法来实现通用的BP算法。参考资料:花书《深度学习》第六章自动微分开源项目:https://gitee.com/Carl-Xie/AutodiffEngine问题引入训练神经网络时,需要计算参数原创 2021-11-15 22:20:53 · 2930 阅读 · 1 评论 -
强对偶定理的证明
强对偶性的证明本博客是参考资料的笔记整理:https://www.bilibili.com/video/BV1dJ411B7gh?t=185&p=381. 预备知识定义 1 凸集:某点集D是凸集,是指对于任意两点x1x_1x1, x2∈Dx_2∈ Dx2∈D 和0≤λ≤10 ≤ λ ≤ 10≤λ≤1,有:x=λx1+(1−λ)x2∈D(1)x=\lambda x_{1}+(1-\lambda) x_{2} \in D \tag{1}x=λx1+(1−λ)x2∈D(1)以下是原创 2020-05-16 17:33:28 · 7353 阅读 · 3 评论 -
从交叉熵到交叉熵损失
原创 2018-12-20 19:26:52 · 300 阅读 · 0 评论