基于flask智能租房可视化系统-django

本项目为前几天收费帮学妹做的一个项目,在工作环境中基本使用不到,但是很多学校把这个当作编程入门的项目来做,故分享出本项目供初学者参考。

一、项目描述

基于Django实现的flask智能租房可视化系统通过MySQL数据库与flask进行开发

登录网址: http://127.0.0.1:5000/

账号:fzi5KH 123456

有数据库

二、项目功能

登录: 用户登录系统,保存个人设置和浏览历史。

首页: 展示热门房源、推荐信息和个性化内容。

地区搜索: 按城市、区域搜索房源,快速定位目标区域。

户型搜索: 按户型类型(如一居、两居)筛选房源,满足特定需求。

价格走势: 展示目标区域或小区的租金价格变化趋势。

小区房源数量: 统计并展示各小区的房源数量,方便比较选择。

户型占比: 分析并展示各户型的占比情况,了解市场供需。

顺义-顺义城 户型价格走势: 展示顺义区顺义城板块各户型的租金价格变化趋势。

小区房源数量: 统计并展示顺义区顺义城板块各小区的房源数量。

三、运行环境开发工具:

pycharm (其他python开发工具也可以)

运行环境:python 3.8(此配置为本人调试所用,仅供参考)

四、项目技术

前端技术:flask

spidermain爬虫启动

五、项目截图

以上系统源码经过技术整理与调试,确保能正常运行

Python租房爬虫可视化是指利用Python爬虫技术获取租房数据,并通过可视化的方式呈现出来。 首先,利用Python的爬虫库(如Requests、BeautifulSoup、Selenium等),可以编写爬虫程序来抓取各大租房网站上的房源信息。通过发送HTTP请求获取网页HTML代码,然后使用爬虫库提供的解析工具对网页进行解析,获取所需的房源数据。 接下来,通过使用Python的数据处理与分析库(如Pandas、Numpy等),可以对获取的房源数据进行清洗和整理,以便后续的可视化处理。 然后,使用Python的数据可视化库(如Matplotlib、Seaborn、Plotly等),可以将清洗后的数据进行可视化展示。可以通过绘制条形图、折线图或热力图等方式,直观地展示房源在不同地区、不同租金范围的分布情况。也可以通过制作地图、散点图等来显示房源的位置分布。 同时,通过Python的交互式可视化库(如Bokeh、Plotly等),可以编写交互式的图表,使用户可以根据自己的需求进行数据的筛选和查询,提供更灵活和个性化的可视化应用。 最后,结合Python的Web开发框架(如FlaskDjango等),可以搭建一个简单的网站或应用程序,将爬虫获取、清洗和可视化的数据展示出来,使用户可以在网页上直接搜索和浏览租房信息,并通过可视化图表对比不同房源的特点。 总之,利用Python租房爬虫可视化可以方便地获取、分析和展示租房数据,提供给用户更直观和全面的租房信息,帮助用户做出更好的租房决策。
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值