矩阵置零算法

矩阵置零

题目

https://leetcode.cn/problems/set-matrix-zeroes/
给定一个 m x n 的矩阵,如果一个元素为 0 ,则将其所在行和列的所有元素都设为 0 。请使用 原地 算法。
示例 1:
示例1
输入:matrix = [[1,1,1],[1,0,1],[1,1,1]]
输出:[[1,0,1],[0,0,0],[1,0,1]]
示例 2:
示例2
输入:matrix = [[0,1,2,0],[3,4,5,2],[1,3,1,5]]
输出:[[0,0,0,0],[0,4,5,0],[0,3,1,0]]
提示:
m == matrix.length
n == matrix[0].length
1 <= m, n <= 200
-231 <= matrix[i][j] <= 231 - 1
进阶:
一个直观的解决方案是使用 O(mn) 的额外空间,但这并不是一个好的解决方案。
一个简单的改进方案是使用 O(m + n) 的额外空间,但这仍然不是最好的解决方案。
你能想出一个仅使用常量空间的解决方案吗?

代码

class Solution {
    public void setZeroes(int[][] matrix) {
         if (matrix == null || matrix.length == 0) {
            return;
        }

        int rows = matrix.length;
        int cols = matrix[0].length;
        boolean firstRowZero = false, firstColZero = false;

        // 标记第一行和第一列是否有0
        for (int i = 0; i < cols; i++) {
            if (matrix[0][i] == 0) {
                firstRowZero = true;
                break;
            }
        }
        for (int j = 0; j < rows; j++) {
            if (matrix[j][0] == 0) {
                firstColZero = true;
                break;
            }
        }

        // 置零
        for (int i = 1; i < rows; i++) {
            for (int j = 1; j < cols; j++) {
                if (matrix[i][j] == 0) {
                    matrix[0][j] = 0;
                    matrix[i][0] = 0;
                }
            }
        }

        // 根据标记的0,将行和列置零
        for (int i = 1; i < rows; i++) {
            if (matrix[i][0] == 0) {
                for (int j = 0; j < cols; j++) {
                    matrix[i][j] = 0;
                }
            }
        }
        for (int j = 1; j < cols; j++) {
            if (matrix[0][j] == 0) {
                for (int i = 0; i < rows; i++) {
                    matrix[i][j] = 0;
                }
            }
        }

        // 处理第一行和第一列
        if (firstRowZero) {
            for (int j = 0; j < cols; j++) {
                matrix[0][j] = 0;
            }
        }
        if (firstColZero) {
            for (int i = 0; i < rows; i++) {
                matrix[i][0] = 0;
            }
        }
    }
}

思路

矩阵置零-思路

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值