概率机器人(1):有关概率的基本概念

本文介绍了概率机器人中的基本概念,包括随机变量(离散与连续)、概率、概率密度函数(如正态分布)、联合分布、条件概率、全概率定理、贝叶斯准则、期望和熵。这些概念在传感器测量、控制和状态估计等领域中至关重要。
摘要由CSDN通过智能技术生成

目录

1.随机变量

2.概率

3.概率密度函数

4.联合分布

5.条件概率

6.全概率定理

7.贝叶斯准则(很重要)

8.期望

9.熵


1.随机变量

       在概率机器人建模时,如传感器测量、控制、机器人的状态及其环境这些都作为随机变量。随机变量分为离散随机变量和连续随机变量。


2.概率

       令X为一个随机变量,x表示X的某一个特定值,那么p(X=x),一般可简写成p(x)​​​​​,​​代表随机变量X具有x值的概率。


3.概率密度函数

      连续随机变量都拥有概率密度函数,普通概率密度函数都是具有均值\mu和方差\sigma ^{2}的一维正态分布。

       正态分布的概率密度函数为:p(x)=(2\pi \sigma ^{2})^{-\frac{1}{2}}e^{-\frac{1}{2}\frac{(x-\mu )^{2}}{\sigma ^{2}}}

       多元正态分布的密度函数为:

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值