CodeForces-799C Fountains

本文探讨了在特定条件下使用线段树和暴力算法解决选取元素问题的方法。通过线段树实现高效的区间查询和更新操作,适用于需要多次查询最大值的情况;而暴力算法则在数据规模较小或可以通过优化减少复杂度时更为简单直观。
摘要由CSDN通过智能技术生成

有三种情况,选一个C和一个D,或者选两个C或D

C,D各一个的时候好找,两个C或D的时候用线段树维护查讯,取这三种情况的最大值

两个C或D的时候直接暴力加一些优化也可以过

线段树方法:

#include<iostream>
#include<cstdio>
#include<cstring>
#include<algorithm>
#include<cmath>
using namespace std;
typedef long long ll;
const int N=1e5+10;
const int maxn=100000+10; //数组大小

int sum[maxn<<2];
 
void PushUp(int rt) //向上更新父节点
{
    sum[rt]=max(sum[rt<<1],sum[rt<<1|1]);
}
 
void build(int l,int r,int rt) //建树
{
    if(l==r)
    {
        sum[rt]=0;
        return;
    }
    int m=(l+r)>>1;
    build(l,m,rt<<1);
    build(m+1,r,rt<<1|1);
    PushUp(rt);
}

void update(int L,int R,int c,int l,int r,int rt)
{
    if(L<=l&&R>=r)
    {
        sum[rt]=max(sum[rt],c);
        return;
    }
    int m=(l+r)>>1;
    if(L<=m) update(L,R,c,l,m,rt<<1);
    if(m<R) update(L,R,c,m+1,r,rt<<1|1);
    PushUp(rt);
}
 
ll query(int L,int R,int l,int r,int rt) //查询L~R
{
    if(L<=l&&R>=r)
    return sum[rt];
    int m=(l+r)>>1;
    ll ret=0;
    if(L<=m) ret=max(ret,query(L,R,l,m,rt<<1));
    if(m<R) ret=max(ret,query(L,R,m+1,r,rt<<1|1));
    return ret;
}
struct node
{
	int p,c;
	bool operator < (const node &u) const
	{
		return p>u.p;
	}
}a[N],b[N];
int ta,tb;
char s[5];
int u,v;
int main()
{
	int n,c,d;
	scanf("%d%d%d",&n,&c,&d);
	ta=tb=0;
	int m=1e5+5;
	for(int i=0;i<n;i++)
	{
		scanf("%d%d%s",&u,&v,s);
		if(s[0]=='C')
		{
			a[ta].p=u;
			a[ta++].c=v;
		}
		else if(s[0]=='D')
		{
			b[tb].p=u;
			b[tb++].c=v;
		}
	}
	sort(a,a+ta);
	sort(b,b+tb);
	int ans=0;
	int pa=0,pb=0;
	for(int i=0;i<ta;i++)
		if(a[i].c<=c)
		{
			pa=a[i].p;
			break;
		}
	for(int i=0;i<tb;i++)
		if(b[i].c<=d)
		{
			pb=b[i].p;
			break;
		}
	if(pa&&pb)
	ans=max(ans,pa+pb);
	int res;
	build(1,m,1);
	for(int i=0;i<ta;i++)
		if(a[i].c<c)
		{
			res=query(1,c-a[i].c,1,m,1);
			if(res) ans=max(res+a[i].p,ans);
			update(a[i].c,a[i].c,a[i].p,1,m,1);
		}
	build(1,m,1);
	for(int i=0;i<tb;i++)
		if(b[i].c<d)
		{
			res=query(1,d-b[i].c,1,m,1);
			if(res) ans=max(res+b[i].p,ans);
			update(b[i].c,b[i].c,b[i].p,1,m,1);
		}
	printf("%d\n",ans);
	return 0;
}

暴力方法:

#include<iostream>
#include<cstdio>
#include<cstring>
#include<algorithm>
#include<cmath>
using namespace std;
typedef long long ll;
const int N=1e5+10;
struct node
{
	int p,c;
	bool operator < (const node &u) const
	{
		return p>u.p;
	}
}a[N],b[N];
int ta,tb;
char s[5];
int u,v;
int main()
{
	int n,c,d;
	scanf("%d%d%d",&n,&c,&d);
	ta=tb=0;
	for(int i=0;i<n;i++)
	{
		scanf("%d%d%s",&u,&v,s);
		if(s[0]=='C')
		{
			a[ta].p=u;
			a[ta++].c=v;
		}
		else if(s[0]=='D')
		{
			b[tb].p=u;
			b[tb++].c=v;
		}
	}
	sort(a,a+ta);
	sort(b,b+tb);
	int ans=0;
	int pa=0,pb=0;
	for(int i=0;i<ta;i++)
		if(a[i].c<=c)
		{
			pa=a[i].p;
			break;
		}
	for(int i=0;i<tb;i++)
		if(b[i].c<=d)
		{
			pb=b[i].p;
			break;
		}
	if(pa&&pb)
	ans=max(ans,pa+pb);
	for(int i=0;i<ta;i++)
		for(int j=i+1;j<ta;j++)
			if(a[i].c+a[j].c<=c)
			{
				ans=max(ans,a[i].p+a[j].p);
				break;
			}
	for(int i=0;i<tb;i++)
		for(int j=i+1;j<tb;j++)
			if(b[i].c+b[j].c<=d)
			{
				ans=max(ans,b[i].p+b[j].p);
				break;
			}
	printf("%d\n",ans);
	return 0;
}

 

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值