机器学习入门笔记(六)----神经网络

1.模型表示:

  • 模型分层:输入层、输出层、隐藏层。a(i) i表示第几层。
  • thera(i) : 为第i层到第i+1层间的权重参数。

2. 向前传播:g(theta(i) * a(i))得到a(i+1)。最后一层即是h(x)
3. 解决分类问题:
  • 类别 c = 2时,输出层仅一个节点,与逻辑回归相同,表示某一个分类的概率。
  • 类别 c > 2时,输出层c个节点,每个节点的输出值为属于该类的概率。结果去其中最大值。
4. 代价函数:

与逻辑回归类似,只不过输出层包含多个逻辑回归的h(x)。
前半部分为k的h(x)与y的误差,在m个样本上的表现。
后半部分为正则项,包含所有theta。
5. 反向传播:
最小化代价函数的方法,利用集成的方法,之前提过,需要计算出:J值,以及对每个theta的偏导项。


注意: 这里j != 0时, D = 1/m * (delta + lamda * theta)   这个括号上图中没有标出。第一次实现算法时,花费了我差不多5小时一遍一遍的检查代码哪里有问题。最终询问了一个教授才知道这个问题。
计算方法:


6. 神经网络训练步骤:

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值