pandas
无
wlbonnie
这个作者很懒,什么都没留下…
展开
-
pandas7-- 数据合并和数据透视
合并 pd.concat([df1, df2], axis=0, join=‘outer’, sort=False) axis=0 默认是纵向拼接 axis=1横向拼接。 join默认连接方式是外连接, 当然还有inner内连接。注意这里没有左连接和右连接。 sort=False只是消除警告而已 拼接的时候按照列名来进行拼接, 不是按照顺序 outer 保留所有表的信息 inner 保留所有表都...原创 2020-03-01 14:47:27 · 240 阅读 · 0 评论 -
pandas6--groupby分组
分组 gp = df.groupby('性别') gp # 分组得到的是一个惰性对象, 本身不会显示任何信息 分组后的查看方式–可迭代对象通用 for i in gp: print(i) gp.groups查看分组情况 len(gp)查看分成了多少组 gp.size()查看每组包含多少条记录 gp.get_groups(某组)获得分组后的某组 分组之后的聚合 gp.count()分...原创 2020-03-01 14:16:24 · 367 阅读 · 0 评论 -
pandas5--
布尔索引 series.map()函数 lambda 匿名函数 数据读入和导出 pd.read_csv() 读取csv文件 读取txt文件, 但是需要注意设置分隔符是sep=’\t’ pd.read_excel() sheet_name 指定读取那张表 数据的导出 df.to_excel() 输出Excel文件 df.to_csv() 输出CSV和TXT文件 index =False – 导出时不...原创 2020-03-01 11:32:52 · 150 阅读 · 0 评论 -
pandas4--索引和切片
df.loc[] 基于标签的索引 显式索引 df.loc[行索引,列索引] df.iloc[] 基于位置的索引 隐式索引 基本格式同上原创 2020-02-23 21:24:37 · 141 阅读 · 0 评论 -
pandas3--列操作
增加列 df[列名]=值 删除列 del df[要删除的列名] 会直接在原数据上修改 df.pop(要删除的列名) 直接会在原表上删除列, 并会以Series返回被删除的列 df.drop(columns=要删除的列名) 不会在原表上进行删除 修改列 修改列的值 df[要修改的列] = 新值 修改列的名 df.columns = 包含新列名的列表(修改全部列的名字) df.r...原创 2020-02-23 20:47:48 · 132 阅读 · 0 评论 -
pandas2--DataFrame
DataFrame对象的创建 通过字典创建 使用包含列表的字典创建DataFrame时,各个列表内元素个数必须一致 默认字典的键为dataframe的字段名,不设定索引的时候,自动给出默认索引,从0到len(list)-1 通过二维数组创建 pd.DataFrame(data, index, columns) data作为值 index作为行索引 columns作为列索引 属性 df.shap...原创 2020-02-23 11:15:09 · 104 阅读 · 0 评论 -
pandas1--Series对象创建
pd.Series(data, index) 属性 ser.values 返回对象的值 ser.index 返回对象的索引 ser.size 返回对象的行数 方法 ser.value_counts() 对值进行分类计数, 缺失值不计入 ser.value_counts()/ser.size # 每个类别所占的比例 ser.isnull() 判断每一个值是否是缺失值 ser.isn...原创 2020-02-23 08:42:20 · 655 阅读 · 0 评论