【机器学习】不知道起什么名
651651三大1非d6sa发大水范德萨
StarsWhisper
䮸䶵䲑䪂䌨䵄
展开
-
随机森林的应用简例
用jupyter lab 做的 太多了懒得排版%matplotlib inlineimport numpy as npimport pandas as pdfrom sklearn.model_selection import GridSearchCVfrom sklearn.ensemble import RandomForestClassifierdf_t = pd.read_excel(r'D:\EdgeDownloadPlace\复赛数据集\train.xlsx',header=Non原创 2020-11-12 10:07:43 · 736 阅读 · 1 评论 -
数据预处理 sklearn 或者别的库
sklearn.preprocessing.MinMaxScaler数据归一化(数据-最小值)/极差 把数据限制在0-1之间 范围可以改 feature_rangefrom sklearn.preprocessing import MinMaxScalerdata = [[-10,16],[-5,32],[0,48],[5,64]]scaler = MinMaxScaler(feature_range = [0,2])scaler = scaler.fit(data)#scaler = s原创 2020-11-04 22:08:55 · 142 阅读 · 0 评论 -
【机器学习】 应用简例 随机森林 交叉验证 网格化搜索
%matplotlib inlineimport numpy as npimport pandas as pdimport matplotlib.pyplot as pltfrom sklearn.ensemble import RandomForestClassifierfrom sklearn.model_selection import train_test_splitfrom sklearn.model_selection import GridSearchCVfrom sklearn原创 2020-10-31 12:15:11 · 1292 阅读 · 0 评论 -
【机器学习】应用简例 随机森林 使用袋外数据(袋装法) + RandomForestClassifier的一些常用方法
import numpy as npimport pandas as pdfrom sklearn.ensemble import RandomForestClassifier# 从excel表导入数据df_t = pd.read_excel(r'D:\EdgeDownloadPlace\3dd40612152202ee8440f82a3d277008\train.xlsx')# 删除uid列df_t = df_t.drop(columns='uid')# 把数据中的'?'换成每一列的众原创 2020-10-30 21:57:07 · 2392 阅读 · 0 评论 -
【机器学习】应用简例 使用sklearn交叉验证随机森林
从excel中导入训练集+交叉验证随机森林import numpy as npimport pandas as pdfrom sklearn.ensemble import RandomForestClassifierfrom sklearn.model_selection import cross_val_scoreimport matplotlib.pyplot as plt# 从excel表导入数据df_t = pd.read_excel(r'D:\EdgeDownloadPlace\原创 2020-10-30 10:03:15 · 2552 阅读 · 0 评论 -
【机器学习】应用简例 决策树 并用graphviz可视化树
import pandas as pdimport numpy as npfrom sklearn import treefrom sklearn.model_selection import train_test_splitdf_t=pd.read_excel(r'D:\EdgeDownloadPlace\3dd40612152202ee8440f82a3d277008\train.xlsx')df_t=df_t.drop(columns='uid')df_tfor col in df原创 2020-10-28 22:19:01 · 428 阅读 · 0 评论 -
【机器学习】应用简例 随机森林-小白无脑乱用
发现随机森林的正确率在0.76-0.86左右,多次用随机森林找一个正确率大于0.84的模型输出答案import numpy as npimport pandas as pdfrom sklearn.ensemble import RandomForestClassifier#随机森林分类器from sklearn.model_selection import train_test_split#功能:将数据集分为训练集测试集 Xtrain,Xtest,Ytrain,Ytestdf_t=pd.r原创 2020-10-28 14:28:23 · 533 阅读 · 0 评论