全网最详细的数据库基础指南

目录

一. 数据库概述

1.1 什么是数据库

1.2 数据库发展历史

1.3 数据库管理系统(DBMS)

二. 数据模型

2.1 概念模型

2.2 逻辑模型

2.3 物理模型

三. 关系数据库

3.1 关系模型基本概念

3.2 关系数据结构

3.3 关系操作

3.4 关系完整性

四. SQL语言基础

4.1 SQL概述

4.2 数据定义

4.3 数据查询

4.4 数据更新

4.5 视图

五. 数据库设计

5.1 数据库设计步骤

5.2 关系数据库规范化

5.3 E-R图向关系模型的转换

六. 数据库安全与完整性

6.1 数据库安全性

6.2 数据库完整性

七. 事务管理

7.1 事务概念

7.2 并发控制

7.3 数据库恢复

八. 数据库新技术

8.1 NoSQL数据库

8.2 分布式数据库

8.3 大数据技术

8.4 云数据库

九. 数据库实践建议

9.1 数据库选择建议

9.2 数据库设计最佳实践

9.3 数据库性能优化

十. 总结


一. 数据库概述

1.1 什么是数据库

数据库(Database)是按照数据结构来组织、存储和管理数据的仓库。它是一个长期存储在计算机内的、有组织的、可共享的、统一管理的大量数据的集合。

数据库的主要特点包括:

  • 持久化存储:数据长期保存,不会因为程序结束而丢失

  • 结构化组织:数据按照特定的数据模型组织

  • 共享性:可以被多个用户和应用共享使用

  • 减少冗余:通过数据共享减少数据重复存储

  • 数据独立性:数据与应用程序相互独立

  • 完整性保障:保证数据的正确性和一致性

  • 安全性控制:提供数据保护机制

1.2 数据库发展历史

数据库技术的发展经历了以下几个主要阶段:

  1. 人工管理阶段(1950年代前)

    • 数据不保存

    • 没有专门的软件管理

    • 数据面向应用,不具有共享性

  2. 文件系统阶段(1950-1960年代)

    • 数据可以长期保存

    • 由文件系统管理数据

    • 数据共享性差,冗余度高

    • 数据独立性差

  3. 数据库系统阶段(1960年代后)

    • 数据结构化

    • 数据共享性高,冗余度低

    • 数据独立性高

    • 有统一的数据控制功能

  4. 现代数据库阶段(21世纪)

    • 分布式数据库

    • NoSQL数据库

    • 云数据库

    • 大数据技术

1.3 数据库管理系统(DBMS)

数据库管理系统(Database Management System, DBMS)是一种操纵和管理数据库的大型软件,用于建立、使用和维护数据库。它对数据库进行统一的管理和控制,以保证数据库的安全性和完整性。

常见的DBMS包括:

  • 关系型数据库:MySQL、Oracle、SQL Server、PostgreSQL

  • NoSQL数据库:MongoDB、Redis、Cassandra

  • 云数据库:AWS RDS、Google Cloud SQL、Azure SQL Database

DBMS的主要功能包括:

  1. 数据定义功能:提供数据定义语言(DDL)

  2. 数据操纵功能:提供数据操纵语言(DML)

  3. 数据库的运行管理

  4. 数据库的建立和维护

  5. 数据组织、存储和管理

  6. 数据库的保护

二. 数据模型

2.1 概念模型

概念模型是对现实世界的第一层抽象,主要用于数据库设计。最常用的概念模型是实体-联系模型(Entity-Relationship Model, E-R模型)。

E-R模型基本概念

  1. 实体(Entity):客观存在并可相互区别的事物

    • 如:学生、课程

  2. 属性(Attribute):实体所具有的某一特性

    • 如:学生的学号、姓名

  3. 联系(Relationship):实体之间的联系

    • 如:学生"选修"课程

E-R图的表示方法

  • 实体:矩形框

  • 属性:椭圆形框

  • 联系:菱形框

  • 连线:连接实体与属性、实体与联系

2.2 逻辑模型

逻辑模型是对概念模型的进一步抽象,主要包括:

  1. 层次模型:树形结构表示实体及其联系

  2. 网状模型:图结构表示实体及其联系

  3. 关系模型:二维表表示实体及其联系

  4. 面向对象模型:对象和类表示实体及其联系

2.3 物理模型

物理模型描述数据在存储介质上的组织结构,与具体的DBMS相关,包括:

  • 文件结构

  • 索引方式

  • 数据存取路径

  • 存储分配参数

三. 关系数据库

3.1 关系模型基本概念

关系模型是目前最常用的数据模型,由E.F.Codd在1970年提出。

基本概念:

  1. 关系(Relation):一张二维表

  2. 元组(Tuple):表中的一行

  3. 属性(Attribute):表中的一列

  4. 域(Domain):属性的取值范围

  5. 候选码(Candidate Key):能唯一标识一个元组的属性组

  6. 主码(Primary Key):被选中的候选码

  7. 外码(Foreign Key):一个关系中的属性是另一个关系的主码

3.2 关系数据结构

关系数据库由多个关系(表)组成,每个关系具有以下性质:

  1. 列是同质的(同一列中的分量是同一类型的数据)

  2. 不同的列可出自同一个域

  3. 列的顺序无所谓

  4. 任意两个元组的候选码不能相同

  5. 行的顺序无所谓

  6. 分量必须取原子值(不可再分)

3.3 关系操作

关系操作包括:

  1. 查询操作:选择、投影、连接、除、并、交、差

  2. 更新操作:插入、删除、修改

关系操作的特点是集合操作方式,即操作的对象和结果都是集合。

3.4 关系完整性

关系模型中有三类完整性约束:

  1. 实体完整性:主码不能取空值

  2. 参照完整性:外码要么取空值,要么等于被参照关系的主码值

  3. 用户定义的完整性:针对具体应用的数据约束

四. SQL语言基础

4.1 SQL概述

SQL(Structured Query Language)是结构化查询语言,用于管理关系数据库。SQL包含以下几部分:

  1. 数据定义语言(DDL):CREATE、ALTER、DROP

  2. 数据操纵语言(DML):SELECT、INSERT、UPDATE、DELETE

  3. 数据控制语言(DCL):GRANT、REVOKE

  4. 事务控制语言(TCL):COMMIT、ROLLBACK、SAVEPOINT

4.2 数据定义

创建表

CREATE TABLE 学生 (
    学号 CHAR(9) PRIMARY KEY,
    姓名 VARCHAR(20) NOT NULL,
    性别 CHAR(2),
    年龄 SMALLINT,
    所在系 VARCHAR(20)
);

修改表

ALTER TABLE 学生 ADD 入学日期 DATE;
ALTER TABLE 学生 ALTER COLUMN 年龄 INT;
ALTER TABLE 学生 DROP COLUMN 性别;

删除表

DROP TABLE 学生;

4.3 数据查询

基本查询

SELECT 学号, 姓名 FROM 学生 WHERE 年龄 > 20;

条件查询

SELECT * FROM 学生 WHERE 所在系='计算机系' AND 年龄<22;

排序

SELECT * FROM 学生 ORDER BY 年龄 DESC, 学号 ASC;

分组

SELECT 所在系, COUNT(*) FROM 学生 GROUP BY 所在系;

连接查询

SELECT 学生.学号, 姓名, 课程名, 成绩 
FROM 学生, 选课, 课程 
WHERE 学生.学号=选课.学号 AND 选课.课程号=课程.课程号;

嵌套查询

SELECT 姓名 FROM 学生 
WHERE 学号 IN (SELECT 学号 FROM 选课 WHERE 课程号='001');

4.4 数据更新

插入数据

INSERT INTO 学生(学号, 姓名, 性别, 年龄, 所在系)
VALUES('2023001', '张三', '男', 20, '计算机系');

修改数据

UPDATE 学生 SET 年龄=21 WHERE 学号='2023001';

删除数据

DELETE FROM 学生 WHERE 学号='2023001';

4.5 视图

创建视图

CREATE VIEW 计算机系学生 AS
SELECT 学号, 姓名, 年龄 FROM 学生 WHERE 所在系='计算机系';

使用视图

SELECT * FROM 计算机系学生 WHERE 年龄>20;

删除视图

DROP VIEW 计算机系学生;

五. 数据库设计

5.1 数据库设计步骤

  1. 需求分析:了解用户需求

  2. 概念结构设计:设计E-R模型

  3. 逻辑结构设计:将E-R图转换为关系模型

  4. 物理结构设计:设计存储结构和存取方法

  5. 数据库实施:建立数据库,编写应用程序

  6. 数据库运行和维护:投入使用并维护

5.2 关系数据库规范化

规范化理论用于设计良好的关系模式,避免数据冗余和操作异常。

函数依赖

设R(U)是属性集U上的关系模式,X和Y是U的子集。若对于R(U)的任意一个可能的关系r,r中不可能存在两个元组在X上的属性值相等,而在Y上的属性值不等,则称X函数确定Y或Y函数依赖于X,记作X→Y。

范式

  1. 第一范式(1NF):所有属性都是不可分的基本数据项

  2. 第二范式(2NF):满足1NF,且非主属性完全依赖于码

  3. 第三范式(3NF):满足2NF,且非主属性不传递依赖于码

  4. BC范式(BCNF):满足3NF,且所有属性都不传递依赖于码

5.3 E-R图向关系模型的转换

  1. 一个实体型转换为一个关系模式

  2. 一个1:1联系可以转换为独立的关系模式,也可以与任意一端合并

  3. 一个1:n联系可以转换为独立的关系模式,也可以与n端合并

  4. 一个m:n联系转换为一个关系模式

  5. 三个及以上实体间的多元联系转换为一个关系模式

六. 数据库安全与完整性

6.1 数据库安全性

数据库安全性指保护数据库以防止不合法使用造成的数据泄露、更改或破坏。

安全性控制方法

  1. 用户标识与鉴别:用户名/密码、生物特征等

  2. 存取控制:自主存取控制(DAC)、强制存取控制(MAC)

  3. 视图机制:通过视图限制用户访问范围

  4. 审计:记录用户操作

  5. 数据加密:存储加密、传输加密

SQL中的安全性控制

-- 授权
GRANT SELECT, INSERT ON TABLE 学生 TO USER1;

-- 收回权限
REVOKE INSERT ON TABLE 学生 FROM USER1;

6.2 数据库完整性

数据库完整性指数据的正确性和相容性。

完整性约束

  1. 实体完整性:PRIMARY KEY约束

  2. 参照完整性:FOREIGN KEY约束

  3. 用户定义完整性

    • 非空约束:NOT NULL

    • 唯一约束:UNIQUE

    • 检查约束:CHECK

    • 默认值:DEFAULT

SQL中的完整性约束

CREATE TABLE 学生 (
    学号 CHAR(9) PRIMARY KEY,
    姓名 VARCHAR(20) NOT NULL,
    性别 CHAR(2) CHECK(性别 IN ('男','女')),
    年龄 SMALLINT CHECK(年龄>=15 AND 年龄<=45),
    所在系 VARCHAR(20) DEFAULT '计算机系'
);

CREATE TABLE 选课 (
    学号 CHAR(9),
    课程号 CHAR(4),
    成绩 SMALLINT CHECK(成绩>=0 AND 成绩<=100),
    PRIMARY KEY(学号, 课程号),
    FOREIGN KEY(学号) REFERENCES 学生(学号),
    FOREIGN KEY(课程号) REFERENCES 课程(课程号)
);

七. 事务管理

7.1 事务概念

事务(Transaction)是用户定义的一个数据库操作序列,这些操作要么全做,要么全不做,是一个不可分割的工作单位。

事务的特性(ACID):

  1. 原子性(Atomicity):事务是不可分割的工作单位

  2. 一致性(Consistency):事务执行使数据库从一个一致状态变到另一个一致状态

  3. 隔离性(Isolation):一个事务的执行不能被其他事务干扰

  4. 持久性(Durability):事务一旦提交,对数据库的改变是永久的

7.2 并发控制

当多个事务并发执行时,可能导致数据不一致问题:

  1. 丢失修改:两个事务同时修改同一数据,一个修改被另一个覆盖

  2. 不可重复读:一个事务内多次读取同一数据,结果不同

  3. 读脏数据:读取了未提交的数据,随后该数据被回滚

封锁协议

通过封锁机制解决并发问题:

  1. 排他锁(X锁):写锁,禁止其他事务读写

  2. 共享锁(S锁):读锁,允许其他事务读但禁止写

隔离级别

SQL标准定义了4个隔离级别:

  1. 读未提交(Read Uncommitted):最低级别,允许脏读

  2. 读已提交(Read Committed):防止脏读

  3. 可重复读(Repeatable Read):防止脏读和不可重复读

  4. 可串行化(Serializable):最高级别,完全隔离

7.3 数据库恢复

数据库恢复技术保证事务的原子性和持久性。

故障类型

  1. 事务内部故障

  2. 系统故障

  3. 介质故障

  4. 计算机病毒

恢复技术

  1. 数据转储:定期备份数据库

  2. 日志文件:记录事务对数据库的更新操作

  3. 检查点:定期记录数据库状态

  4. 恢复策略

    • 事务故障恢复:UNDO

    • 系统故障恢复:UNDO未完成事务,REDO已提交事务

    • 介质故障恢复:重装备份,利用日志重做

八. 数据库新技术

8.1 NoSQL数据库

NoSQL(Not Only SQL)数据库是为解决大规模数据集合多重数据种类带来的挑战而设计的。

NoSQL特点

  1. 灵活的数据模型

  2. 高可扩展性

  3. 高性能

  4. 高可用性

  5. 简单的API

NoSQL类型

  1. 键值数据库:Redis、DynamoDB

  2. 文档数据库:MongoDB、CouchDB

  3. 列族数据库:Cassandra、HBase

  4. 图数据库:Neo4j、ArangoDB

8.2 分布式数据库

分布式数据库是物理上分散而逻辑上集中的数据库系统。

特点:

  1. 数据物理分布在不同场地

  2. 每个场地可以独立处理本地数据

  3. 也可以同时存取多个场地的数据

8.3 大数据技术

大数据技术处理海量、高增长率和多样化的信息资产。

关键技术:

  1. Hadoop生态系统

  2. Spark

  3. Flink

  4. 数据仓库技术

  5. 数据湖技术

8.4 云数据库

云数据库是基于云计算技术构建的数据库服务。

特点:

  1. 按需付费

  2. 弹性扩展

  3. 高可用性

  4. 免维护

主要云数据库服务:

  1. AWS RDS

  2. Google Cloud SQL

  3. Azure SQL Database

  4. 阿里云RDS

九. 数据库实践建议

9.1 数据库选择建议

  1. 关系型数据库适用场景

    • 数据结构固定

    • 需要复杂查询

    • 需要事务支持

    • 数据一致性要求高

  2. NoSQL数据库适用场景

    • 数据结构多变

    • 海量数据存储

    • 高并发读写

    • 水平扩展需求

9.2 数据库设计最佳实践

  1. 合理设计表结构,遵循规范化原则但不过度规范化

  2. 选择合适的数据类型和字段长度

  3. 建立适当的索引提高查询效率

  4. 考虑数据增长和扩展需求

  5. 设计良好的主键和外键关系

  6. 考虑数据安全性和访问控制

9.3 数据库性能优化

  1. SQL优化

    • 避免SELECT *

    • 合理使用JOIN

    • 避免在WHERE子句中使用函数

    • 使用EXPLAIN分析查询计划

  2. 索引优化

    • 为常用查询条件创建索引

    • 避免过多索引

    • 考虑复合索引的顺序

    • 定期维护索引

  3. 配置优化

    • 调整内存分配

    • 优化缓存设置

    • 配置合理的连接池

  4. 架构优化

    • 读写分离

    • 分库分表

    • 使用缓存层

十. 总结

        本文全面介绍了数据库的基础知识,从基本概念到高级主题,涵盖了关系数据库理论、SQL语言、数据库设计、事务管理、安全性和新技术等多个方面。数据库是现代信息系统的核心组件,掌握数据库基础知识对于任何IT专业人员都至关重要。

        随着技术的发展,数据库领域不断涌现新的技术和解决方案,但关系数据库和SQL仍然是基础。建议读者在学习新技术的同时,也要扎实掌握这些基础知识,为未来的学习和工作打下坚实基础。

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

枫super

你的鼓励就是我最大的动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值