建立数学模型的工作包含:
模型分析(合理性分析,误差分析,灵敏性分析)
某软件公司开发某种软件产品时花费的固定成本为16万元,每套产品的可变成本为2元,设销售单价为10元,则需要销售()套才能达到盈亏平衡点。
总成本=固定成本+产品数*可变成本
销售总收入=单价*产品数
当盈亏平衡时,总成本=销售总收入
160000+2*n=10*n
8n=160000
n=20000
某类产品《种品牌在某地区的市场占有率常用概率向量u=(ui,u2,…,un)表示(各分量分别表示各品牌的市场占有率值非负,且总和为1)。
市场占有率每隔一定时间的变化常用转移矩阵Pn*n表示。如果在相当长时期内,该转移矩阵的元素均是常数,又设初始时刻的市场占有率为向量u,则下一时刻的市场占有率就是uP再下一时刻的市场占有率就是uP2,而且,市场占有率会逐步稳定到某个概率向量Z,即出现ZP=Z。
这种稳定的市场占有率体现了转移矩阵的特征,与初始时刻的市场占有率无关。假设占领某地区市场的冰箱品牌A与B,每月市场占有率的变化可用如下常数转移矩阵来描述:
则冰箱品牌A与B在该地区最终将逐步稳定到市场占有率()。
某公司需要将4吨贵金属材料分配给下属的甲、乙、丙三个子公司(单位:吨)。据测算,各子公司得到这些材料后所能获得的利润(单位:万元)见下表:
想据此表,只要材料分配适当,该公司最多可以获得利润()万元。
在军事演习中,张司令希望将部队尽快从A地通过公路网(见下图)运送到F地 ,标出了各路段上的最大运量(单位:千人/小时)。根据该图可以算出,从A地到F地的最大运量是()千人/小时。
从A到F有多条路径,总的最大运量应等于每条路径上的最大运量之和。
每条路径上有多段,每条路径上的最大运量应是各路段最大运量的最小值。多条路径可以共享同一路段,该路段上的流量等于所有各条路径上的流量之和。
计算步骤如下(步骤并不唯一,但计算结果最大流量值应该是一致的)
ABF最大流量8(AB剩余流量5,BF断开)
ABEF最大流量4(AB剩余流量1,BE断开,EF剩余流量11)
ABCEF最大流量1(AB断开,BC剩余流量2,CE剩余流量5,EF剩余流量10)ACEF最大流量2(AC断开,CE剩余流量3,EF剩余流量8)
ADCEF最大流量3(AD剩余流量5,DC和CE断开,EF剩余流量5)ADEF最大流量4(AD剩余流量1,DE断开,EF剩余流量1)
AF总的最大流量等于8+4+1+2+3+4=22(干人/小时)。