HDU 5667 Sequence【矩阵快速幂】【欧拉函数】

6 篇文章 0 订阅
6 篇文章 0 订阅

题目链接

http://acm.hdu.edu.cn/showproblem.php?pid=5667

思路

给你 fn=1,ab,abfcn1fn2,n=1n=2otherwise ,叫你求 fn

首先因为两边都是a为底的,所以取个log,那么a的幂 wn=b+c×wn1+wn2 ,这个式子可以用矩阵快速幂算出来。

c10100101n1×w2w1b=wn+1wnb

然后 fn=awn ,这个也用快速幂去算就行了。

要注意的是 Ab%C=Ab%ϕ(c)+ϕ(c)%C
因为 c=p 是素数,所以 ϕ(p)=p1 ,所以在矩阵乘法里模 p1 ,算 awn 时模 p

然后要注意就是有一个坑,就是当a%p=0 wn%p=0 时, awn%p 理应为0,但 a0 算出来会是1,所以要特判下。

AC代码

#include <iostream>
#include <cstdio>
#include <cstring>
using namespace std;
typedef long long ll;
ll MOD;
const int N=3;
struct matrix
{
    ll mat[N][N];
    matrix(void)
    {
        memset(mat,0,sizeof mat);
    }
    matrix friend operator * (matrix a, matrix b)
    {
        int n=N;
        matrix ans;
        for(int i=0 ; i<n ; ++i)
        {
            for(int j=0 ; j<n ; ++j)
            {
                int sum=0;
                for(int k=0 ; k<n ; ++k)
                {
                    sum+=a.mat[i][k]*b.mat[k][j]%(MOD-1);
                    sum%=(MOD-1);
                }
                ans.mat[i][j]=sum;
            }
        }
        return ans;
    }
};

int main()
{
    int T;
    scanf("%d",&T);
    while(T--)
    {
        ll n,a,b,c;
        scanf("%lld%lld%lld%lld%lld",&n,&a,&b,&c,&MOD);
        if(n==1)
        {
            printf("1\n");
            continue;
        }
        if(n==2)
        {
            printf("%lld\n",b);
            continue;
        }
        if(a%MOD==0)
        {
            printf("0\n");
            continue;
        }
        matrix A;
        A.mat[0][0]=c;A.mat[0][1]=1;A.mat[0][2]=1;
        A.mat[1][0]=1;A.mat[1][1]=0;A.mat[1][2]=0;
        A.mat[2][0]=0;A.mat[2][1]=0;A.mat[2][2]=1;

        matrix ans;
        ans.mat[0][0]=1;ans.mat[0][1]=0;ans.mat[0][2]=0;
        ans.mat[1][0]=0;ans.mat[1][1]=1;ans.mat[1][2]=0;
        ans.mat[2][0]=0;ans.mat[2][1]=0;ans.mat[2][2]=1;

        n--;
        while(n)
        {
            if(n&1)
            {
                ans=ans*A;
            }
            A=A*A;
            n>>=1;
        }
        ll wn=(ans.mat[1][0]*b+ans.mat[1][2]*b)%(MOD-1);

        ll res=1;
        while(wn)
        {
            if(wn&1)
            {
                res*=a;
                res%=MOD;
            }
            a=a*a;
            a%=MOD;
            wn>>=1;
        }
        printf("%lld\n",res);
    }

    return 0;
}
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值