测试链接
总时间限制: 2000ms 单个测试点时间限制: 1000ms 内存限制: 131072kB
描述
对于一个2行N列的走道。现在用12,22的砖去铺满。问有多少种不同的方式。
下图是一个2行17列的走道的某种铺法。
输入
整个测试有多组数据,请做到文件底结束。每行给出一个数字N,0 <= n <= 250
输出
如题
样例输入
2
8
12
100
200
样例输出
3
171
2731
845100400152152934331135470251
1071292029505993517027974728227441735014801995855195223534251
递推方法:
#include<iostream>
using namespace std;
int main(){
int n,k,m,num=0;
int f[300][1000]={0};
f[1][0]=1,f[1][1]=1; //f[i][0] 是记录高精度加法的位数, 边界条件n=1时,有1种方法,n=2时有3种方法
f[2][0]=1,f[2][1]=3;
for(int i=3;i<=250;i++)
{
for(int j=1;j<=max(f[i-1][0],f[i-2][0]);j++)
f[i][j]=2*f[i-2][j]+f[i-1][j];
f[i][0]=max(f[i-1][0],f[i-2][0]);
for(int j=1;j<=f[i][0];j++)
{
if(f[i][j]>=10)
{
f[i][j+1]+=f[i][j]/10; //向上进1位
f[i][j]=f[i][j]%10;
}
}
if(f[i][f[i][0]+1]) f[i][0]++; //如果发现有进位,则位数加1
}
while(scanf("%d",&n)!=EOF)
{
if(n==0)printf("1\n");
else{
for(int i=f[n][0];i>=1;i--)
printf("%d",f[n][i]);
printf("\n");
}
}
return 0;
}
递归方法:
#include<iostream>
#include<cstring>
using namespace std;
int f[300][305];
int* Plus(int a[],int b[])
{
int k;
k=max(a[0],b[0]);
for(int i=1;i<=k;i++)
{
a[i+1]+=(a[i]+b[i])/10;
a[i]=(a[i]+b[i])%10;
}
a[0]=k;
if(a[k+1]>0) a[0]++;
return a;
}
int* Multi(int a[],int key)
{
if(key==0)
{
memset(a,0,sizeof(a));
a[0]=1;
return 0;
}
for(int i=1;i<=a[0];i++)
a[i]*=key;
for(int i=1;i<=a[0];i++)
{
a[i+1]+=a[i]/10;
a[i]%=10;
}
if(a[a[0]+1]) a[0]++;
return a;
}
void give(int a[],int b[])
{
for(int i=0;i<=a[0];i++)
b[i]=a[i];
}
int* DFS(int i)
{
int temp1[305]={0},temp2[305]={0};
if(f[i][0]!=0) return f[i]; //不等于0意味着这个数n肯定是1或者2
else
{
give(DFS(i-1),temp1);
give(DFS(i-2),temp2);
give(Plus(temp1,Multi(temp2,2)),f[i]);
return f[i];
}
}
int main(){
int n;
f[0][0]=1,f[0][1]=1,
f[1][0]=1,f[1][1]=1; //f[i][0] 是记录高精度加法的位数, 边界条件n=1时,有1种方法,n=2时有3种方法
f[2][0]=1,f[2][1]=3;
DFS(255);
while(scanf("%d",&n)!=EOF)
{
if(n==0)printf("1\n");
else{
for(int i=f[n][0];i>=1;i--)
printf("%d",f[n][i]);
printf("\n");
}
}
return 0;
}