第十一周项目1(2)二叉树构造算法的验证

问题描述及代码:

#ifndef BTREE_H_INCLUDED
#define BTREE_H_INCLUDED
/*   
*烟台大学计控学院    
*作    者:王力源  
*完成日期:2016年11月10日
*问题描述:任何n(n>0)个不同节点的二叉树,都可由它的中序序列和后序序列唯一地确定。

*/
#endif // BTREE_H_INCLUDED
(1)btree.h

#ifndef BTREE_H_INCLUDED
#define BTREE_H_INCLUDED
#define MaxSize 100

typedef char ElemType;
typedef struct node
{
    ElemType data;              //数据元素
    struct node *lchild;        //指向左孩子
    struct node *rchild;        //指向右孩子
} BTNode;
void CreateBTNode(BTNode *&b,char *str);        //由str串创建二叉链
BTNode *FindNode(BTNode *b,ElemType x);     //返回data域为x的节点指针
BTNode *LchildNode(BTNode *p);  //返回*p节点的左孩子节点指针
BTNode *RchildNode(BTNode *p);  //返回*p节点的右孩子节点指针
int BTNodeDepth(BTNode *b); //求二叉树b的深度
void DispBTNode(BTNode *b); //以括号表示法输出二叉树
void DestroyBTNode(BTNode *&b);  //销毁二叉树
BTNode *CreateBT2(char *post,char *in,int n);




#endif // BTREE_H_INCLUDED





(2)btree.cpp

#include <stdio.h>
#include <malloc.h>
#include "btree.h"

void CreateBTNode(BTNode *&b,char *str)     //由str串创建二叉链
{
    BTNode *St[MaxSize],*p=NULL;
    int top=-1,k,j=0;
    char ch;
    b=NULL;             //建立的二叉树初始时为空
    ch=str[j];
    while (ch!='\0')    //str未扫描完时循环
    {
        switch(ch)
        {
        case '(':
            top++;
            St[top]=p;
            k=1;
            break;      //为左节点
        case ')':
            top--;
            break;
        case ',':
            k=2;
            break;                          //为右节点
        default:
            p=(BTNode *)malloc(sizeof(BTNode));
            p->data=ch;
            p->lchild=p->rchild=NULL;
            if (b==NULL)                    //p指向二叉树的根节点
                b=p;
            else                            //已建立二叉树根节点
            {
                switch(k)
                {
                case 1:
                    St[top]->lchild=p;
                    break;
                case 2:
                    St[top]->rchild=p;
                    break;
                }
            }
        }
        j++;
        ch=str[j];
    }
}
BTNode *FindNode(BTNode *b,ElemType x)  //返回data域为x的节点指针
{
    BTNode *p;
    if (b==NULL)
        return NULL;
    else if (b->data==x)
        return b;
    else
    {
        p=FindNode(b->lchild,x);
        if (p!=NULL)
            return p;
        else
            return FindNode(b->rchild,x);
    }
}
BTNode *LchildNode(BTNode *p)   //返回*p节点的左孩子节点指针
{
    return p->lchild;
}
BTNode *RchildNode(BTNode *p)   //返回*p节点的右孩子节点指针
{
    return p->rchild;
}
int BTNodeDepth(BTNode *b)  //求二叉树b的深度
{
    int lchilddep,rchilddep;
    if (b==NULL)
        return(0);                          //空树的高度为0
    else
    {
        lchilddep=BTNodeDepth(b->lchild);   //求左子树的高度为lchilddep
        rchilddep=BTNodeDepth(b->rchild);   //求右子树的高度为rchilddep
        return (lchilddep>rchilddep)? (lchilddep+1):(rchilddep+1);
    }
}
void DispBTNode(BTNode *b)  //以括号表示法输出二叉树
{
    if (b!=NULL)
    {
        printf("%c",b->data);
        if (b->lchild!=NULL || b->rchild!=NULL)
        {
            printf("(");
            DispBTNode(b->lchild);
            if (b->rchild!=NULL) printf(",");
            DispBTNode(b->rchild);
            printf(")");
        }
    }
}
void DestroyBTNode(BTNode *&b)   //销毁二叉树
{
    if (b!=NULL)
    {
        DestroyBTNode(b->lchild);
        DestroyBTNode(b->rchild);
        free(b);
    }
}
BTNode *CreateBT2(char *post,char *in,int n)
/*post存放后序序列,in存放中序序列,n为二叉树结点个数,
本算法执行后返回构造的二叉链的根结点指针*/
{
    BTNode *s;
    char r,*p;
    int k;
    if (n<=0) return NULL;
    r=*(post+n-1);                          //根结点值
    s=(BTNode *)malloc(sizeof(BTNode));     //创建二叉树结点*s
    s->data=r;
    for (p=in; p<in+n; p++)                 //在in中查找根结点
        if (*p==r)
            break;
    k=p-in;                                 //k为根结点在in中的下标
    s->lchild=CreateBT2(post,in,k);         //递归构造左子树
    s->rchild=CreateBT2(post+k,p+1,n-k-1);  //递归构造右子树
    return s;
}



(3)main.cpp

#include<stdio.h>
#include"btree.h"
int main()
{
    ElemType in[]="DGBAECF",post[]="GDBEFCA";
    BTNode *b2;
    b2=CreateBT2(post,in,7);
    printf("b2:");
    DispBTNode(b2);
    printf("\n");
    return 0;
}

运行结果




好的,我会尽力回答你的问题。以下是对你提出的Java二叉树问题的回答: 1. 输入叶子节点 首先,我们需要定义节点类: ```java class Node { int value; Node left; Node right; public Node(int value) { this.value = value; } } ``` 然后,我们可以通过递归的方式生成二叉树: ```java public Node createTree(Scanner scanner) { System.out.println("请输入节点值:"); int value = scanner.nextInt(); if (value == 0) { return null; } Node node = new Node(value); node.left = createTree(scanner); node.right = createTree(scanner); return node; } ``` 2. 求二叉树中叶子结点个数 我们可以通过递归的方式遍历二叉树,统计叶子节点的个数: ```java public int countLeafNodes(Node node) { if (node == null) { return 0; } if (node.left == null && node.right == null) { return 1; } return countLeafNodes(node.left) + countLeafNodes(node.right); } ``` 3. 将每个结点的左子树与右子树交换 我们可以通过递归的方式遍历二叉树,交换每个节点的左右子树: ```java public void swapLeftRight(Node node) { if (node == null) { return; } Node temp = node.left; node.left = node.right; node.right = temp; swapLeftRight(node.left); swapLeftRight(node.right); } ``` 4. 验证二叉树的性质3:n0=n2+1 我们可以通过递归的方式遍历二叉树,统计叶子节点和度为2的节点的个数,然后判断它们是否符合性质3: ```java public boolean verifyPropertyThree(Node node) { int leafNodes = countLeafNodes(node); int degreeTwoNodes = countDegreeTwoNodes(node); return leafNodes == degreeTwoNodes + 1; } public int countDegreeTwoNodes(Node node) { if (node == null) { return 0; } if (node.left != null && node.right != null) { return countDegreeTwoNodes(node.left) + countDegreeTwoNodes(node.right) + 1; } return countDegreeTwoNodes(node.left) + countDegreeTwoNodes(node.right); } ``` 5. 输出值大于k的结点 我们可以通过递归的方式遍历二叉树,输出值大于k的节点: ```java public void printNodesGreaterThanK(Node node, int k) { if (node == null) { return; } if (node.value > k) { System.out.print(node.value + " "); } printNodesGreaterThanK(node.left, k); printNodesGreaterThanK(node.right, k); } ``` 6. 已知先根和中根次序遍历序列构造二叉树 我们可以通过递归的方式构造二叉树,先根次序遍历的第一个节点是根节点,然后在中根次序遍历中找到根节点的位置,将序列分为左右两部分,分别构造左右子树: ```java public Node buildTree(int[] preOrder, int[] inOrder, int preStart, int preEnd, int inStart, int inEnd) { if (preStart > preEnd || inStart > inEnd) { return null; } int rootValue = preOrder[preStart]; Node root = new Node(rootValue); int rootIndex = -1; for (int i = inStart; i <= inEnd; i++) { if (inOrder[i] == rootValue) { rootIndex = i; break; } } int leftSize = rootIndex - inStart; root.left = buildTree(preOrder, inOrder, preStart + 1, preStart + leftSize, inStart, rootIndex - 1); root.right = buildTree(preOrder, inOrder, preStart + leftSize + 1, preEnd, rootIndex + 1, inEnd); return root; } ``` 7. 以广义表表示构造二叉树 我们可以通过递归的方式构造二叉树,广义表的表示方法是:(root,left,right),其中left和right都是广义表的形式: ```java public Node buildTree(String str) { if (str == null || str.length() == 0) { return null; } int firstCommaIndex = str.indexOf(","); int value = Integer.parseInt(str.substring(1, firstCommaIndex)); Node root = new Node(value); int secondCommaIndex = findSecondCommaIndex(str); root.left = buildTree(str.substring(firstCommaIndex + 1, secondCommaIndex)); root.right = buildTree(str.substring(secondCommaIndex + 1, str.length() - 1)); return root; } private int findSecondCommaIndex(String str) { int count = 0; for (int i = 1; i < str.length() - 1; i++) { if (str.charAt(i) == '(') { count++; } else if (str.charAt(i) == ')') { count--; } else if (str.charAt(i) == ',' && count == 0) { return i; } } return -1; } ``` 8. 判断两颗二叉树是否相等 我们可以通过递归的方式比较两棵二叉树是否相等: ```java public boolean isSameTree(Node p, Node q) { if (p == null && q == null) { return true; } if (p == null || q == null) { return false; } if (p.value != q.value) { return false; } return isSameTree(p.left, q.left) && isSameTree(p.right, q.right); } ``` 9. 求结点所在的层次 我们可以通过递归的方式求出结点所在的层次: ```java public int getNodeLevel(Node node, Node target, int level) { if (node == null) { return 0; } if (node == target) { return level; } int leftLevel = getNodeLevel(node.left, target, level + 1); if (leftLevel != 0) { return leftLevel; } int rightLevel = getNodeLevel(node.right, target, level + 1); return rightLevel; } ``` 10. 求一颗二叉树在后根次序遍历下第一个访问的结点 我们可以通过递归的方式求出在后根次序遍历下第一个访问的结点: ```java public Node getFirstVisitNode(Node node) { if (node == null) { return null; } Node left = getFirstVisitNode(node.left); Node right = getFirstVisitNode(node.right); if (left == null && right == null) { return node; } if (right == null) { return left; } if (left == null) { return right; } return node; } ``` 11. 复制一颗二叉树 我们可以通过递归的方式复制一颗二叉树: ```java public Node cloneTree(Node node) { if (node == null) { return null; } Node clone = new Node(node.value); clone.left = cloneTree(node.left); clone.right = cloneTree(node.right); return clone; } ``` 12. 判断一颗二叉树是否为完全二叉树 我们可以通过层次遍历的方式判断一颗二叉树是否为完全二叉树: ```java public boolean isCompleteTree(Node node) { Queue<Node> queue = new LinkedList<>(); queue.offer(node); boolean nullNodeAppeared = false; while (!queue.isEmpty()) { Node current = queue.poll(); if (current == null) { nullNodeAppeared = true; } else { if (nullNodeAppeared) { return false; } queue.offer(current.left); queue.offer(current.right); } } return true; } ``` 13. 实现二叉树后根次序遍历的非递归算法的操作,并每一个操作分别采用先根、中根、后根、层次遍历算法 我们可以使用栈的方式实现后根次序遍历的非递归算法,先根、中根、层次遍历的非递归算法也可以使用栈或队列实现: ```java // 后根次序遍历的非递归算法 public void postOrderTraversal(Node node) { Stack<Node> stack1 = new Stack<>(); Stack<Node> stack2 = new Stack<>(); stack1.push(node); while (!stack1.isEmpty()) { Node current = stack1.pop(); stack2.push(current); if (current.left != null) { stack1.push(current.left); } if (current.right != null) { stack1.push(current.right); } } while (!stack2.isEmpty()) { System.out.print(stack2.pop().value + " "); } } // 先根次序遍历的非递归算法 public void preOrderTraversal(Node node) { Stack<Node> stack = new Stack<>(); stack.push(node); while (!stack.isEmpty()) { Node current = stack.pop(); System.out.print(current.value + " "); if (current.right != null) { stack.push(current.right); } if (current.left != null) { stack.push(current.left); } } } // 中根次序遍历的非递归算法 public void inOrderTraversal(Node node) { Stack<Node> stack = new Stack<>(); Node current = node; while (current != null || !stack.isEmpty()) { while (current != null) { stack.push(current); current = current.left; } current = stack.pop(); System.out.print(current.value + " "); current = current.right; } } // 层次遍历的非递归算法 public void levelOrderTraversal(Node node) { Queue<Node> queue = new LinkedList<>(); queue.offer(node); while (!queue.isEmpty()) { Node current = queue.poll(); System.out.print(current.value + " "); if (current.left != null) { queue.offer(current.left); } if (current.right != null) { queue.offer(current.right); } } } ```
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值