分治法:循环赛日程安排问题

版权声明:本文为博主原创文章,未经博主允许不得转载。 https://blog.csdn.net/wly_2014/article/details/51388263

问题:设有n=2^k个选手参加循环赛,要求设计一个满足以下要求比赛日程表:

1)每个选手必须与其它n-1个选手各赛一次;

2)每个选手一天只能赛一次。


分析,按照上面的要求,可以将比赛表设计成一个n行n-1列的二维表,其中第i行第j列的元素表示和第i个选手在第j天比赛的选手号。

采用分治策略,可将所有参加比赛的选手分成两部分,n=2^k个选手的比赛日程表就可以通过n=2^(k-1)个选手的的比赛日程表来决定。递归的执行这样的分割,直到只剩下两个选手,比赛日程表的就可以通过这样的分治策略逐步构建。


首先看只有两个选手的日程安排,如下图:


解释:如果只有两个选手,那么第0列看作选手编号(我们从0开始对列编号,我们的第0列可以看作每个选手第0天在和自己打--姑且看作自己在做心态调整),第1列就是在第一天,每个选手要比赛的选手号。

如果选手的个数为2^2=4,那么日程安排如下图


解释:如果有4个选手,分别设计4/2=2个选手的比赛日程表,1-2选手前一天的比赛日程表如上图表格左上角的绿色子表格部分,3-4选手前一天的比赛日程表如上图表格左下角的子表格。据此,后两天的日程表可以将左上角的子表按其对应位置抄到右下角的子表,左下角的子表可以按其对应位置抄到右上角的子表。(同时,我们注意到,这是表的行列均为参赛选手数2^2 = 4,在用分治法求行、列均为(2^2)/2的长度的子表时,首先确定左上角的子表,左下角的子表可以由左上角的子表加(2^2)/2得到

如果选手的个数为2^3=8,那么日程安排表如下:


解释:选手人数为8时,左上角的子表是选手1至选手4的前三天的比赛日程,左下角是选手5至选手8前三天的比赛日程。据此后四天的比赛日程,就是分别将左上角子表按其对应位置抄到右下角,将左下角的子表按其对应位置抄到右上角。这样就完成了比赛日程的安排。


这种解法是把求解2^k个选手的比赛日程问题划分为2^1,2^2,......,2^k个选手的比赛日程问题。也就是说,要求2^k个选手的比赛日程,就要分为两部分,分别求出2^(k-1)个选手的比赛日程,然后再进行合并。当然,这种解法只能求选手个数是2的次幂的情况。

在每次迭代求解的过程中,可以看作4部分:

1)求左上角子表:左上角子表是前2^(k-1)个选手的比赛前半程的比赛日程。

2)求左下角子表:左下角子表是剩余的2^(k-1)个选手的比赛前半程比赛日程。这个子表和左上角子表的对应关系式,对应元素等于左上角子表对应元素加2^(k-1)。

3)求右上角子表:等于左下角子表的对应元素。

4)求右下角子表:等于左上角子表的对应元素。


具体代码:

#include<iostream>
#include<vector>
using namespace std;

void GameTable(vector<vector<int> > &vec){
	if(vec.size() == 0){
		return;
	}
	size_t s = vec.size();
	int k = 0;
	while(s = s >> 1){
		//s = s >> 1;
		k++;
	}
        //初始化
	vec[0][0] = 1;
	vec[0][1] = 2;
	vec[1][0] = 2;
	vec[1][1] = 1;

	for(int i = 2; i <= k; i++){
		int length = 0x1 << i;
		int half = length >> 1;
		//左下角的子表中项为左上角子表对应项加half=2^(i-1)
		for(int row = 0; row < half; row++){
			for(int col = 0; col < half; col++){
				vec[row + half][col] = vec[row][col] + half;
			}
		}
		//右上角的子表等于左下角子表
		for(int row = 0; row < half; row++){
			for(int col = 0; col < half; col++){
				vec[row][col + half] = vec[row + half][col];
			}
		}
		//右下角的子表等于左上角子表
		for(int row = 0; row < half; row++){
			for(int col = 0; col < half; col++){
				vec[row + half][col + half] = vec[row][col];
			}
		}
	}
}

int main(void){
	cout << "共有2^k个选手参加比赛,输入k(k>0):" << endl;
	int k;
	do{
		cin >> k;
	}while(k < 0 || k > 31);

	int s = 0x1 << k;
	vector<vector<int> > vec(s, vector<int>(s, 0));

	GameTable(vec);

	for(size_t i = 0; i < vec.size(); i++){
		for(size_t j = 0; j < vec[i].size(); j++){
			cout << vec[i][j] << " ";
		}
		cout << endl;
	}
	return 0;
}

从上面的介绍知道,这个过程就是一个填表的过程,因此其时间、空间复杂度为O(2^k * 2^k)。

展开阅读全文

没有更多推荐了,返回首页