在不务正业大半年后继续开始写正经的解题报告……
题目链接:
题意:
一个N<=50,M<=1000的边带权无向图,给定K<=5,第1~K号点是住宅,第N-K+1~N号点是避难所。要求选出一些边,把它们连起来,使得每个住宅都能走到一个避难所(注意一个避难所只能给一个住宅用),求最小的权值之和。
斯坦纳树:
这道题是基于斯坦纳树的。斯坦纳树的定义是:给定一张图和一个顶点集合,要求选出一些边,使得集合中的顶点连通。显然最小生成树是斯坦纳树的一个特殊情况:集合就是整个顶点集合V。
可以用状压DP求解斯坦纳树:令f[i][s]=(以i为根,集合中顶点连通情况至少为s的最小代价)。
首先从小到大枚举s转移。有两种转移方式:
1. f[i][s]=min(f[i][s], f[i][t]+f[i][s-t]),要求t是s的子集。枚举i和t即可完成。 枚举t可以用:for(t=s;t;t=(t-1)&s)。这个转移的意思是,将以i为根的两棵树“拼”起来。
2. f[i][s]=min(f[i][s], f[j][s]+w(i,j)),要求i,j之间有连边。这个意思是从j这个根往外“长”。
第二种转移比较麻烦,因为没有一个确定的顺序。怎么办呢?SPFA。在第一种转移结束后,建超级源S,向每个点连边w(S,i)=f[i][s],原图中的边保持不变。然后从超级源S开始做一次最短路,就可以把第二种转移搞定了。
题解:
我们的这道题基本就是斯坦纳树。但还有一小点不同:最后不一定是所有的住宅&避难所都在同一个联通块中。例如:住宅1,2和避难所8,9连通,住宅3和避难所10连通,这也是符合基本法的,可以作为一组解。
怎么办呢?在求完斯坦纳树之后,额外再进行一次“子集合并”的DP,注意,这里所有的合法状态都必须是住宅数=避难所数的。
代码:
#include<iostream>
#include<cstdio>
#include<algorithm>
#include<cstring>
#include<vector>
#include<queue>
using namespace std;
const int INF=0x7fffffff/2;
const int SIZEN=60;
int N,M,K;
vector<pair<int,int> > c[SIZEN];
void SPFA(int S,int dis[]){
static bool inq[SIZEN];
static queue<int> Q;
for(int i=0;i<=N;i++) inq[i]=false,dis[i]=INF;
while(!Q.empty()) Q.pop();
dis[S]=0;Q.push(S);inq[S]=true;
while(!Q.empty()){
int x=Q.front();Q.pop();inq[x]=false;
for(int i=0;i<c[x].size();i++){
int u=c[x][i].first,w=c[x][i].second;
if(dis[x]+w<dis[u]){
dis[u]=dis[x]+w;
if(!inq[u]){
inq[u]=true;
Q.push(u);
}
}
}
}
//for(int i=1;i<=N;i++) cout<<dis[i]<<" ";cout<<endl;
}
int F[SIZEN][1<<10]={0};//i为根,连通状态至少为s
int dis[SIZEN]={0};
void Steiner(void){
for(int i=0;i<=N;i++){
for(int j=0;j<(1<<(2*K));j++) F[i][j]=INF;
}
for(int i=1;i<=K;i++){
F[i][1<<(i-1)]=0;
F[N+1-i][1<<(i+K-1)]=0;
}
for(int s=0;s<(1<<(2*K));s++){
for(int i=1;i<=N;i++){
for(int t=s;t;t=(t-1)&s){
F[i][s]=min(F[i][s],F[i][t]+F[i][s-t]);
}
}
for(int i=1;i<=N;i++) c[0][i-1].second=F[i][s];
SPFA(0,dis);
for(int i=1;i<=N;i++) F[i][s]=min(F[i][s],dis[i]);
}
}
bool is_balanced(int s){
int x=0;
for(int i=0;i<K;i++){
if(s&(1<<i)) x++;
if(s&(1<<(K+i))) x--;
}
return x==0;
}
int dp[1<<10];
void Final_DP(void){
for(int i=0;i<(1<<(2*K));i++) dp[i]=INF;
for(int s=0;s<(1<<(2*K));s++){
if(!is_balanced(s)) continue;
for(int i=1;i<=N;i++) dp[s]=min(dp[s],F[i][s]);
for(int t=s;t;t=(t-1)&s){
dp[s]=min(dp[s],dp[t]+dp[s-t]);
}
}
int ans=dp[(1<<(2*K))-1];
if(ans==INF) printf("No solution\n");
else printf("%d\n",ans);
}
void read(void){
scanf("%d%d%d",&N,&M,&K);
for(int i=0;i<=N;i++) c[i].clear();
for(int i=1;i<=M;i++){
int a,b,w;
scanf("%d%d%d",&a,&b,&w);
c[a].push_back(make_pair(b,w));
c[b].push_back(make_pair(a,w));
}
for(int i=1;i<=N;i++){
c[0].push_back(make_pair(i,0));
}
}
int main(void){
//freopen("input.in","r",stdin);
int kase;
scanf("%d",&kase);
while(kase--){
read();
Steiner();
Final_DP();
}
return 0;
}
由于忘掉“No Solution”,WA掉一次……