最短路问题

单源最短路

概念:

从一个点到所有点的最短距离

所有边权都是正数

情况:

如果题目给的是稠密图,那么用朴素Dijkstra算法

如果是稀疏图,就用堆优化版的Dijkstra算法

朴素Dijkstra算法(时间复杂度:O(n^2))——  n表示点的数量

步骤:

1.初始化距离:dist[1] = 0, disr[i] = 正无穷

2.for循环1到n,找到不在s中距离最近的点放到t中,再把t放到s中。最后用t更新其他点的距离

补充:s为已确定最短距离的点。

稠密图用邻接矩阵存储,稀疏图用邻接表存储

当m~n^2时通常被认为是稠密图, 当m~n时,被认为是稀疏图

代码

#include <iostream>
#include <cstring>
#include <algorithm>
using namespace std;

const int N = 510;

int n, m;
int g[N][N];//邻接矩阵
int dist[N];//每个点到起始点的距离
bool st[N];//每个点的最短路是否确定

int Dijkstra()
{
	memset(dist, 0x3f, sizeof dist);
	dist[1] = 0;

	for (int i = 0; i < n; i++) {
		int t = -1;
		for (int j = 1; j <= n; j++) {
			if (!st[j] && (t == -1 || dist[t] > dist[j]))
				t = j;
		}

		st[t] = true;

		for (int j = 1; j <= n; j++) {
			//用1~t的距离更新1~j的长度
			dist[j] = min(dist[j], dist[t] + g[t][j]);
		}
	}

	if (dist[n] == 0x3f3f3f3f) return -1;
	return dist[n];
}

int main()
{
	cin >> n >> m;

	memset(g, 0x3f, sizeof g);

	while (m--)
	{
		int a, b, c;
		cin >> a >> b >> c;
		g[a][b] = min(g[a][b], c);//这里用min是防止重边,遇到重边选最小的那条
	}

	int t = Dijkstra();

	cout << t << endl;
	return 0;
}

堆优化版的Dijkstra算法(时间复杂度:O(mlogn))——  m表示边

代码:

#include <iostream>
#include <cstring>
#include <algorithm>
#include <queue>
using namespace std;

typedef pair<int, int> PII;

const int N = 100010;

int n, m;
int h[N], w[N], e[N], ne[N], idx;//邻接表
int dist[N];//每个点到起始点的距离
bool st[N];//每个点的最短路是否确定

void add(int a, int b, int c)
{
	e[idx] = b, w[idx] = c, ne[idx] = h[a], h[a] = idx++;
}

int Dijkstra()
{
	memset(dist, 0x3f, sizeof dist);
	dist[1] = 0;

	priority_queue<PII, vector<PII>, greater<PII>> heap;//小根堆
	heap.push({ 0, 1 });

	while (heap.size())
	{
		auto t = heap.top();//取队头,也就是最小的那个
		heap.pop();

		int ver = t.second, distance = t.first;
		if (st[ver]) continue;

		for (int i = h[ver]; i != -1; i = ne[i]) {
			int j = e[i];
			//更新距离
			if (dist[j] > distance + w[i]) {
				dist[j] = distance + w[i];
				heap.push({ dist[j], j });
			}
		}

	}

	if (dist[n] == 0x3f3f3f3f) return -1;
	return dist[n];
}

int main()
{
	cin >> n >> m;

	memset(h, -1, sizeof h);

	while (m--)
	{
		int a, b, c;
		cin >> a >> b >> c;
		add(a, b, c);
	}

	int t = Dijkstra();

	cout << t << endl;
	return 0;
}

存在负权边

情况:

如果题目给出限制:最多经过k条边的最短路径(限制边数),那么用Bellman-Ford。

否则用SPFA。

Bellman-Ford(时间复杂度:O(nm))

步骤:

两重循环,第一次循环,循环n次,第二次循环遍历所有边,循环的同时更新所有边。

dist[b] = min(dist[b],dist[a] + w); ——  松弛操作

循环完之后,一定有dist[b] <= dist[a] + w;——  三角不等式

代码:

#include <iostream>
#include <cstring>
#include <algorithm>
using namespace std;

const int N = 510, M = 10010;
int n, m, k;
int dist[N], backup[N];

struct Edge
{
	int a, b, w;
}edges[M];

int bellman_ford()
{
	memset(dist, 0x3f, sizeof dist);
	dist[1] = 0;

	for (int i = 0; i < k; i++) {
		memcpy(backup, dist, sizeof dist);//防止串连
		for (int j = 0; j < m; j++) {
			int a = edges[j].a, b = edges[j].b, w = edges[j].w;
			dist[b] = min(dist[b], backup[a] + w);//更新距离
		}
	}
	
	//不写dist[n] == 0x3f3f3f3f是因为可能存在负权边把dist[n]给更新了
	//也就是假如n-1个点能够到第n个点,当它们两个的边时负的,而题目到不了第n-1的点(距离为无穷)
	//就会导致第n的点dist不是)0x3f3f3f3f了。
	if (dist[n] > 0x3f3f3f3f / 2) return -1;
	else return dist[n];
}

int main()
{
	cin >> n >> m >> k;

	for (int i = 0; i < m; i++) {
		int a, b, w;
		cin >> a >> b >> w;
		edges[i] = { a, b, w };
	}

	int t = bellman_ford();
	if (t == -1) cout << "No" << endl;
	else cout << t << endl;
	return 0;
}

SPFA(时间复杂度:一般为O(m),最坏O(nm) )

区别:

与Bellman-ford相比,SPFA的优化在于多了一个队列,用来存储进行了距离更新的点(在Bellman-ford算法是遍历了全部的边,但有一些边是无须遍历更新的。),每次取点就从队列里来取。

SPFA其实与堆优化版的Dijkstra算法很像。

另外,常用SPFA来判断是否存在负环

代码:

#include <iostream>
#include <cstring>
#include <algorithm>
#include <queue>
using namespace std;

typedef pair<int, int> PII;

const int N = 100010;

int n, m;
int h[N], w[N], e[N], ne[N], idx;//邻接表
int dist[N];//每个点到起始点的距离
bool st[N];//每个点的最短路是否确定

void add(int a, int b, int c)
{
	e[idx] = b, w[idx] = c, ne[idx] = h[a], h[a] = idx++;
}

int spfa()
{
	memset(dist, 0x3f, sizeof dist);
	dist[1] = 0;

	queue<int> q;
	q.push(1);
	st[1] = true;

	while (q.size()) {
		int t = q.front();
		q.pop();

		st[t] = false;
		for (int i = 0; i != -1; i = ne[i]) {
			int j = e[i];
			if (dist[j] > dist[t] + w[i]) {
				dist[j] = dist[t] + w[i];
				if (!st[j]) {
					q.push(j);
					st[j] = true;
				}
			}
		}
	}

	if (dist[n] == 0x3f3f3f3f)return -1;
	return dist[n];
}

int main()
{
	cin >> n >> m;

	memset(h, -1, sizeof h);

	while (m--)
	{
		int a, b, c;
		cin >> a >> b >> c;
		add(a, b, c);
	}

	int t = spfa();

	if (t == -1) cout << "No" << endl;
	else cout << t << endl;
	return 0;
}

多源汇最短路

概念:

任意两个点的最短距离(起点、终点是不确定的)

Floyd算法(时间复杂度:O(n^3))

基本原理:

利用三层循环来不断更新每个点到每个点的最短路。

这里k必须放在第一层循环中。

代码:

#include <iostream>
#include <algorithm>
#include <cstring>
using namespace std;

const int N = 210;
const int INF = 0x3f3f3f3f;

int n, m, Q;
int d[N][N];//邻接矩阵

void floyd()
{
	for (int k = 1; k <= n; k++)
		for (int i = 1; i <= n; i++)
			for (int j = 1; j <= n; j++)
				d[i][j] = min(d[i][j], d[i][k] + d[k][j]);
}

int main()
{
	cin >> n >> m >> Q;
	//初始化邻接矩阵
	for (int i = 1; i <= n; i++)
		for (int j = 1; j <= n; j++)
			if (i == j) d[i][j] = 0;
			else d[i][j] = INF;
	//给邻接矩阵赋值
	while (m--) {
		int a, b, w;
		cin >> a >> b >> w;
		
		d[a][b] = min(d[a][b], w);//防止重边,如果有选最短的边
	}

	floyd();

	while (Q--) {
		int a, b;
		cin >> a >> b;
		if (d[a][b] > INF / 2) cout << "No" << endl;
		else cout << d[a][b] << endl;
	}

	return 0;
}

  • 0
    点赞
  • 0
    收藏
    觉得还不错? 一键收藏
  • 0
    评论
以下是使用Matlab解决最短路问题的示例代码: ```matlab % 首先定义图的邻接矩阵 % 例如下面的邻接矩阵表示一个6个节点的有向图 % 从1到2的边权重为2,从1到3的边权重为4,以此类推 % 如果两个节点之间没有边相连,则边权重为inf G = [0 2 4 inf inf inf; inf 0 1 5 inf inf; inf inf 0 1 inf inf; inf inf inf 0 3 inf; inf inf inf inf 0 2; inf inf inf inf inf 0]; % 使用Dijkstra算法计算从节点1到其他节点的最短路径和距离 [start_node, dist] = dijkstra(G, 1); % 打印结果 fprintf('从节点1到其他节点的最短路径和距离如下:\n'); for i = 1:length(dist) fprintf('从节点1到节点%d的最短路径为:', i); print_path(start_node, i); fprintf(',距离为:%d\n', dist(i)); end % Dijkstra算法实现 function [start_node, dist] = dijkstra(G, s) n = size(G, 1); start_node = zeros(1, n); dist = inf(1, n); visited = false(1, n); dist(s) = 0; for i = 1:n-1 u = find_min_dist(dist, visited); visited(u) = true; for v = 1:n if ~visited(v) && G(u,v) ~= inf && dist(u) + G(u,v) < dist(v) dist(v) = dist(u) + G(u,v); start_node(v) = u; end end end end % 辅助函数:找到距离源节点最近的未访问节点 function u = find_min_dist(dist, visited) dist(visited) = inf; [~, u] = min(dist); end % 辅助函数:打印路径 function print_path(start_node, v) if start_node(v) == 0 fprintf('%d', v); else print_path(start_node, start_node(v)); fprintf(' -> %d', v); end end ``` 希望这个示例代码能够帮助您解决最短路问题

“相关推荐”对你有帮助么?

  • 非常没帮助
  • 没帮助
  • 一般
  • 有帮助
  • 非常有帮助
提交
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值