有向图欧拉回路计数问题

1 篇文章 0 订阅
1 篇文章 0 订阅

题意:

给一张联通的有向图和点 S S S,问图中以 S S S为起点的欧拉回路数 n u m ( s ) num(s) num(s)

BEST定理: 一 张 图 的 欧 拉 回 路 个 数 = d e t s ( K ) × ∏ v ∈ G ( d e g ( v ) − 1 ) ! 一张图的欧拉回路个数=det_s(K)\times \prod_{v\in G}{(deg(v)-1)!} =dets(K)×vG(deg(v)1)!

其中 K K K是基尔霍夫矩阵, d e g ( v ) deg(v) deg(v)表示 v v v的度数, d e t s ( K ) det_s(K) dets(K)表示K抽去 s s s这一行一列后的主子式。(这里抽去任何一行一列似乎都可以,不过还是选择抽去题目给的起点)
然后如果边的环同构不算一种方案,还需要乘起点的度数。

#include<bits/stdc++.h>
using namespace std;
#define int long long
const int mod=1e9+7;
const int maxn=1e5+5; 
inline int read(){
	char c=getchar();int t=0,f=1;
	while(!isdigit(c)){if(c=='-')f=-1;c=getchar();}
	while(isdigit(c)){t=(t<<3)+(t<<1)+(c^48);c=getchar();}
	return t*f;
}
int n,m;
int ans=0;
int ru[305],chu[305],mp[305][305],rec[maxn];
inline int am(int x){
	return x>=mod?x-mod:x;
}
inline int ksm(int a,int b){
	int ans=1;
	while(b){
		if(b&1)ans=1ll*ans*a%mod;
		a=1ll*a*a%mod;b>>=1;
	}
	return ans;
}
int gauss(){
	int ans=1,i,j;
	for(i=2;i<=n;i++){//注意这里从2开始,说明删掉了第1行,第1列
		for(j=i;j<=n;j++){
			if(mp[j][i])break;
		}
		if(j!=i){
			ans=mod-ans;
			for(int k=i;k<n;k++)swap(mp[i][k],mp[j][k]);
		}
		ans=am((1ll*ans*mp[i][i])%mod+mod);
		for(j=i+1;j<=n;j++){
			if(mp[j][i]){
				int st=am(1ll*mp[j][i]*ksm(mp[i][i],mod-2)%mod+mod);
				for(int k=i;k<=n;k++){
					mp[j][k]=am(mp[j][k]-1ll*st*mp[i][k]%mod+mod);
				}
			}
		}
	}
	return ans;
}
signed main(){
	//freopen("a.in","r",stdin);
	//freopen("a.out","w",stdout);
	n=read(),m=read();
	for(int i=1;i<=m;i++){
		int a=read(),b=read();
		ru[b]++;chu[a]++;
		mp[a][b]--;
		mp[b][b]++;
	}
	/*for(int i=1;i<=n;i++){
		for(int j=1;j<=n;j++)printf("%d ",mp[i][j]);
		puts("");
	}*/
	for(int i=1;i<=n;i++){
		if(ru[i]!=chu[i]){puts("0");return 0;}
	}
	if(n==1&&m==0){
		puts("1");return 0;
	}
	rec[0]=1;
	for(int i=1;i<=m;i++)rec[i]=1ll*rec[i-1]*i%mod;
	ans=gauss();
	//printf("%d\n",ans);
	for(int i=1;i<=n;i++){
		ans=1ll*ans*rec[chu[i]-1]%mod;
	}
	printf("%lld\n",1ll*ans*chu[1]%mod);
	return 0;
}

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值