这道题也是想了好久,想了好久才想到数塔上来,想到之后心里那个happy啊,悲催的是,又开始纠结到底该怎么循环。因为是从中间点开始出发的,,,我去,顺序循环逆序循环都不行,,,最后还是看了看别人的代码才明白怎么处理这种情况,,,,,,,,,,学习了。。。。。。。。。。。题目:
免费馅饼
Time Limit: 2000/1000 MS (Java/Others) Memory Limit: 65536/32768 K (Java/Others)Total Submission(s): 10840 Accepted Submission(s): 3565
Problem Description
都说天上不会掉馅饼,但有一天gameboy正走在回家的小径上,忽然天上掉下大把大把的馅饼。说来gameboy的人品实在是太好了,这馅饼别处都不掉,就掉落在他身旁的10米范围内。馅饼如果掉在了地上当然就不能吃了,所以gameboy马上卸下身上的背包去接。但由于小径两侧都不能站人,所以他只能在小径上接。由于gameboy平时老呆在房间里玩游戏,虽然在游戏中是个身手敏捷的高手,但在现实中运动神经特别迟钝,每秒种只有在移动不超过一米的范围内接住坠落的馅饼。现在给这条小径如图标上坐标:
为了使问题简化,假设在接下来的一段时间里,馅饼都掉落在0-10这11个位置。开始时gameboy站在5这个位置,因此在第一秒,他只能接到4,5,6这三个位置中其中一个位置上的馅饼。问gameboy最多可能接到多少个馅饼?(假设他的背包可以容纳无穷多个馅饼)
为了使问题简化,假设在接下来的一段时间里,馅饼都掉落在0-10这11个位置。开始时gameboy站在5这个位置,因此在第一秒,他只能接到4,5,6这三个位置中其中一个位置上的馅饼。问gameboy最多可能接到多少个馅饼?(假设他的背包可以容纳无穷多个馅饼)
Input
输入数据有多组。每组数据的第一行为以正整数n(0<n<100000),表示有n个馅饼掉在这条小径上。在结下来的n行中,每行有两个整数x,T(0<T<100000),表示在第T秒有一个馅饼掉在x点上。同一秒钟在同一点上可能掉下多个馅饼。n=0时输入结束。
Output
每一组输入数据对应一行输出。输出一个整数m,表示gameboy最多可能接到m个馅饼。
提示:本题的输入数据量比较大,建议用scanf读入,用cin可能会超时。
提示:本题的输入数据量比较大,建议用scanf读入,用cin可能会超时。
Sample Input
6 5 1 4 1 6 1 7 2 7 2 8 3 0
Sample Output
4
#include <iostream>
#include <cstdio>
#include <string.h>
using namespace std;
const int N=100010;
int dp[N][11],num[N][11],maxt,maxnum;
int max2(int a,int b,int c){
int x=a>b?a:b;
return x>c?x:c;
}
int max1(int a,int b){
return a>b?a:b;
}
void fun(){
dp[0][5]=num[0][5];
for(int t=1;t<=maxt;++t){
int begin=0,end=0;
if(t>=5){
begin=0;end=10;
}
else{
begin=5-t;end=5+t;
}
for(int pos=begin;pos<=end;++pos){
if(pos==0){
dp[t][pos]=max1(dp[t-1][pos],dp[t-1][pos+1])+num[t][pos];
}
else if(pos==10){
dp[t][pos]=max1(dp[t-1][pos],dp[t-1][pos-1])+num[t][pos];
}
else{
dp[t][pos]=max2(dp[t-1][pos-1],dp[t-1][pos],dp[t-1][pos+1])+num[t][pos];
}
if(dp[t][pos]>maxnum)
maxnum=dp[t][pos];
}
}
}
int main(){
//freopen("4.txt","r",stdin);
int n;
while(scanf("%d",&n)&&n){
memset(num,0,sizeof(num));
int a,b;
maxt=0;maxnum=0;
for(int i=1;i<=n;++i){
scanf("%d%d",&a,&b);
num[b][a]++;
if(b>maxt)
maxt=b;
}
memset(dp,0,sizeof(dp));
fun();
printf("%d\n",maxnum);
}
return 0;
}