yolov8目标检测原理与实战(一):yolov8实验环境安装

#新星杯·14天创作挑战营·第11期#

yolov8目标检测原理与实战

1、Pycharm 安装教程

1.1、Pycahrm 下载

pycharm 下载网址,里面有不同历史版本的 pycharm:下载地址

注意两点:

  1. 需要下载社区版本,该版本免费;
  2. 需要下载对应的版本,本文的版本为 2023.2.1 版本。

外链图片转存失败,源站可能有防盗链机制,建议将图片保存下来直接上传

1.2、Pycahrm 安装

下载好本文对应的版本 pycharm 安装包,该安装包是一个 exe 文件。双击 exe 进行安装,按如下步骤:

在这里插入图片描述

在这里插入图片描述

默认路径是安装在 c 盘,建议安装到D盘,同时路径中不要有中文,以免后续有各种奇怪的问题。

在这里插入图片描述

将所有的框全部勾选上

外链图片转存失败,源站可能有防盗链机制,建议将图片保存下来直接上传

点击安装,开始安装即可

在这里插入图片描述

此时桌面会有一个 pycharm 的图标,表格该软件安装完成。

2、anaconda 安装

2.1、anaconda 下载

anaconda 下载网址,里面有不同历史版本的 anaconda:下载地址

本文所用的版本为 2023.07-2 版本

在这里插入图片描述

2.2、anaconda 安装

下载完成,会有一个安装包的 exe,双击 exe 进行安装,按如下步骤:

在这里插入图片描述

在这里插入图片描述

在这里插入图片描述

这里一定要选择 just me 否则在后续创建环境的时候会出各种各样的问题。

在这里插入图片描述

这里安装路径的选择,最好不要放在默认路径,默认路径在 C 盘,最好在其他盘中创建路径,并记住路径。因为后续在安装各种环境的时候环境占用空间很大,放在 c 盘空间会不够。

在这里插入图片描述

将这里的√全部框上,点击安装。

在这里插入图片描述

安装完毕点击完成即可。

在这里插入图片描述

在这里插入图片描述

2.3、Anaconda 中 Python 环境的创建

在这里插入图片描述

点击图标 anaconda prompt,会弹出一个黑框。

输入如下命令:

conda create -n pytorch python==3.8 #上述的命令的意思是,创建一个名字为 pytorch 的环境,其中 Python 版本为 3.8,其中名字可以指定,只要不是中文都行,不一定是 pytorch,Python 的版本也可以修改,3.5、3.6、 3.7 都可以。

在这里插入图片描述

会跳出如上界面,输入 y,表示下载对应的环境依赖包

所有的包安装完毕输入如下命令查看环境数量:

conda env list

在这里插入图片描述

可以看到现在环境中除了基础的 base 环境,还有刚刚创建的名字为 pytorch 的环境Labelimg 软件使用

3、Labelimg 软件使用

3.1、Labelimg 软件的介绍

Labelimg 是一款开源的数据标注工具,可以标注三种格式。

  1. VOC 标签格式,保存为 xml 文件。
  2. yolo 标签格式,保存为 txt 文件。
  3. createML 标签格式,保存为 json 格式。

3.2、Labelimg 软件的下载和安装

方法 1:anaconda 中利用 pip 进行安装下载

  • 打开 anaconda Prompt 功能
  • 创建对应的环境来管理和下载 labelimg 软件

在 anaconda 环境中可以创建一个独立的环境来管理和下载 labelimg 这个软件。首先创建一个环境,可以创建环境名为label。 具体命令如下:

conda create -n label python==3.8

下载对应的环境依赖库,具体如下所示:

在这里插入图片描述

创建好了环境以后,即可进入环境,同时查看环境中的基础环境包:

激活环境:

activate label 

查看环境中的基础环境包:

conda list

在这里插入图片描述

  • 下载和安装 labelimg 软件

在名字为 label 的环境下安装 labelimg 这个标注软件 运行命令:

pip install labelimg

下载完成后如下所示:

在这里插入图片描述

此时,我们再运行 conda list 查看安装的库:

  • 运行 labelimg

在 label 这个环境下,运行命令:labelimg,即可打开软件

在这里插入图片描述

3.3、Labelimg 软件界面的介绍与标注数据教程

1、软件介绍

标注软件界面各种功能如图所示:

在这里插入图片描述

对软件进行设置:

在这里插入图片描述

标注过程中常用的快捷键:

  • A:切换到上一张图片
  • D:切换到下一张图片
  • W:调出标注十字架
  • del :删除标注框框
  • Ctrl+u:选择标注的图片文件夹
  • Ctrl+r:选择标注好的 label 标签存在的文件夹
2、如何标注

首先在标注之前需要设置标注数据的路径和保存标注文件的路径:

4.pytorch 与深度学习环境安装

4.1、NVIDIA 驱动安装与更新

在设置中搜索设备管理器找到自己显卡的型号,可以看到我的显卡是 3050:

在这里插入图片描述

有显卡驱动的,可以直接在桌面右键,找到英伟达驱动控制面板打开就好了。

在这里插入图片描述

没有显卡驱动去英伟达驱动官网 官网 打开驱动官网找到适合自己设备的选项就行。

下载安装完以后,我们查看支持 cuda 驱动的支持最高版本 cuda tookit。

按下 win+R 组合键,打开 cmd 命令窗口。

输入如下的命令:

nvidia-smi 

得到如下的结果,可以看到我的显卡驱动支持的最高版本 cuda tookit 是 12.7,版本是向下兼容的,因此只要安装向下兼容的 cuda tookit 版本即可。

在这里插入图片描述

4.2、pytorch 的 GPU 深度学习环境安装

点击pytorch 下载网址:下载,打开的网址如下图所示。
在这里插入图片描述

不断往下滑动,找到对应的 1.10.1 版本,复制红框中的链接

在这里插入图片描述

只复制如下部分:

conda install pytorch==1.10.1 torchvision==0.11.2 torchaudio==0.10.1 cudatoolkit=11.3 -c pytorch

4.3、创建yolov8实验环境

输入如下命令创建v8环境:

conda create -n v8 python==3.8

在这里插入图片描述

在这里插入图片描述

进入v8环境中,输入命令:

activate v8

输入命令查看v8中的库:

conda list

在这里插入图片描述

进入 anaconda 创建的v8环境,复制上述的命令:

conda install pytorch==1.10.1 torchvision==0.11.2 torchaudio==0.10.1 cudatoolkit=11.3 -c pytorch

加载对应的依赖包,输入 y,进行对应的 pytorch 和 cudatookit 安装。中间可能会因为网络的原因导致下载对应的安装包失败,就需要从新输入该命令,使 其恢复下载,已经下载好的包不会再次下载,只会下载没有安装好的包。

在这里插入图片描述

下载完成以后,输入如下的命令查看环境中的安装包:

conda list 

会得到该环境下的所有环境包。

查看是否有安装好的对应版本的 pytorch 和 cudatoolkit。

4.4 安装yolov8对应的库

requirements.txt的内容

matplotlib3.7.5
numpy
1.23.0
opencv-python4.10.0.84
Pillow
9.5.0
PyYAML6.0.2
requests
2.32.3
scipy1.10.1
tqdm
4.67.0
tensorboard2.14.0
pandas
2.0.3
seaborn0.13.2
setuptools
59.5.0
easydict1.13
imutils
0.5.4

-i https://pypi.douban.com/simple/

-i https://pypi.tuna.tsinghua.edu.cn/simple

-i https://mirrors.aliyun.com/pypi/simple/

输入以下命令

pip install -r C:\Users\Administrator\Desktop\yolov8\requirements.txt -i https://pypi.tuna.tsinghua.edu.cn/simple
#C:\Users\Administrator\Desktop\yolov8\requirements.txt为requirements的绝对路径

安装成功如下:

输入命令:

conda list

查看对应库的版本

输入命令安装ultralytics库

pip install ultralytics==8.2.103 -i https://pypi.tuna.tsinghua.edu.cn/simple

在这里插入图片描述

评论 4
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值