yolov8目标检测原理与实战
1、Pycharm 安装教程
1.1、Pycahrm 下载
pycharm 下载网址,里面有不同历史版本的 pycharm:下载地址
注意两点:
- 需要下载社区版本,该版本免费;
- 需要下载对应的版本,本文的版本为 2023.2.1 版本。
1.2、Pycahrm 安装
下载好本文对应的版本 pycharm 安装包,该安装包是一个 exe 文件。双击 exe 进行安装,按如下步骤:
默认路径是安装在 c 盘,建议安装到D盘,同时路径中不要有中文,以免后续有各种奇怪的问题。
将所有的框全部勾选上
点击安装,开始安装即可
此时桌面会有一个 pycharm 的图标,表格该软件安装完成。
2、anaconda 安装
2.1、anaconda 下载
anaconda 下载网址,里面有不同历史版本的 anaconda:下载地址
本文所用的版本为 2023.07-2 版本
2.2、anaconda 安装
下载完成,会有一个安装包的 exe,双击 exe 进行安装,按如下步骤:
这里一定要选择 just me 否则在后续创建环境的时候会出各种各样的问题。
这里安装路径的选择,最好不要放在默认路径,默认路径在 C 盘,最好在其他盘中创建路径,并记住路径。因为后续在安装各种环境的时候环境占用空间很大,放在 c 盘空间会不够。
将这里的√全部框上,点击安装。
安装完毕点击完成即可。
2.3、Anaconda 中 Python 环境的创建
点击图标 anaconda prompt,会弹出一个黑框。
输入如下命令:
conda create -n pytorch python==3.8 #上述的命令的意思是,创建一个名字为 pytorch 的环境,其中 Python 版本为 3.8,其中名字可以指定,只要不是中文都行,不一定是 pytorch,Python 的版本也可以修改,3.5、3.6、 3.7 都可以。
会跳出如上界面,输入 y,表示下载对应的环境依赖包
所有的包安装完毕输入如下命令查看环境数量:
conda env list
可以看到现在环境中除了基础的 base 环境,还有刚刚创建的名字为 pytorch 的环境Labelimg 软件使用
3、Labelimg 软件使用
3.1、Labelimg 软件的介绍
Labelimg 是一款开源的数据标注工具,可以标注三种格式。
- VOC 标签格式,保存为 xml 文件。
- yolo 标签格式,保存为 txt 文件。
- createML 标签格式,保存为 json 格式。
3.2、Labelimg 软件的下载和安装
方法 1:anaconda 中利用 pip 进行安装下载
- 打开 anaconda Prompt 功能
- 创建对应的环境来管理和下载 labelimg 软件
在 anaconda 环境中可以创建一个独立的环境来管理和下载 labelimg 这个软件。首先创建一个环境,可以创建环境名为label。 具体命令如下:
conda create -n label python==3.8
下载对应的环境依赖库,具体如下所示:
创建好了环境以后,即可进入环境,同时查看环境中的基础环境包:
激活环境:
activate label
查看环境中的基础环境包:
conda list
- 下载和安装 labelimg 软件
在名字为 label 的环境下安装 labelimg 这个标注软件 运行命令:
pip install labelimg
下载完成后如下所示:
此时,我们再运行 conda list 查看安装的库:
- 运行 labelimg
在 label 这个环境下,运行命令:labelimg,即可打开软件
3.3、Labelimg 软件界面的介绍与标注数据教程
1、软件介绍
标注软件界面各种功能如图所示:
对软件进行设置:
标注过程中常用的快捷键:
- A:切换到上一张图片
- D:切换到下一张图片
- W:调出标注十字架
- del :删除标注框框
- Ctrl+u:选择标注的图片文件夹
- Ctrl+r:选择标注好的 label 标签存在的文件夹
2、如何标注
首先在标注之前需要设置标注数据的路径和保存标注文件的路径:
4.pytorch 与深度学习环境安装
4.1、NVIDIA 驱动安装与更新
在设置中搜索设备管理器找到自己显卡的型号,可以看到我的显卡是 3050:
有显卡驱动的,可以直接在桌面右键,找到英伟达驱动控制面板打开就好了。
没有显卡驱动去英伟达驱动官网 官网 打开驱动官网找到适合自己设备的选项就行。
下载安装完以后,我们查看支持 cuda 驱动的支持最高版本 cuda tookit。
按下 win+R 组合键,打开 cmd 命令窗口。
输入如下的命令:
nvidia-smi
得到如下的结果,可以看到我的显卡驱动支持的最高版本 cuda tookit 是 12.7,版本是向下兼容的,因此只要安装向下兼容的 cuda tookit 版本即可。
4.2、pytorch 的 GPU 深度学习环境安装
点击pytorch 下载网址:下载,打开的网址如下图所示。
不断往下滑动,找到对应的 1.10.1 版本,复制红框中的链接
只复制如下部分:
conda install pytorch==1.10.1 torchvision==0.11.2 torchaudio==0.10.1 cudatoolkit=11.3 -c pytorch
4.3、创建yolov8实验环境
输入如下命令创建v8环境:
conda create -n v8 python==3.8
进入v8环境中,输入命令:
activate v8
输入命令查看v8中的库:
conda list
进入 anaconda 创建的v8环境,复制上述的命令:
conda install pytorch==1.10.1 torchvision==0.11.2 torchaudio==0.10.1 cudatoolkit=11.3 -c pytorch
加载对应的依赖包,输入 y,进行对应的 pytorch 和 cudatookit 安装。中间可能会因为网络的原因导致下载对应的安装包失败,就需要从新输入该命令,使 其恢复下载,已经下载好的包不会再次下载,只会下载没有安装好的包。
下载完成以后,输入如下的命令查看环境中的安装包:
conda list
会得到该环境下的所有环境包。
查看是否有安装好的对应版本的 pytorch 和 cudatoolkit。
4.4 安装yolov8对应的库
requirements.txt的内容
matplotlib3.7.5
numpy1.23.0
opencv-python4.10.0.84
Pillow9.5.0
PyYAML6.0.2
requests2.32.3
scipy1.10.1
tqdm4.67.0
tensorboard2.14.0
pandas2.0.3
seaborn0.13.2
setuptools59.5.0
easydict1.13
imutils0.5.4-i https://pypi.douban.com/simple/
-i https://pypi.tuna.tsinghua.edu.cn/simple
-i https://mirrors.aliyun.com/pypi/simple/
输入以下命令
pip install -r C:\Users\Administrator\Desktop\yolov8\requirements.txt -i https://pypi.tuna.tsinghua.edu.cn/simple
#C:\Users\Administrator\Desktop\yolov8\requirements.txt为requirements的绝对路径
安装成功如下:
输入命令:
conda list
查看对应库的版本
输入命令安装ultralytics库
pip install ultralytics==8.2.103 -i https://pypi.tuna.tsinghua.edu.cn/simple