快速排序
是由冒泡排序改进而得的。在冒泡排序中,只对相邻的两个记录进行比较,因此每次交换两个相邻记录时只能消除一个逆序。而快速排序可以通过两个不相邻记录的一次交换,来消除多个逆序。
基本思想:
- 任取一个元素
为中心
- 所有比它小的元素一律前放,比它大的元素一律后方,形成
左右两个子表
- 对各子表重新选择中心元素并依此规则继续形成左右两个子表(
递归
的思想) - 直到每个子表元素
只剩一个
基本思想: 通过一趟排序,将待排序记录分割成独立的两部分,其中一部分记录的关键字均比另一部分的关键字小,则可分别对这两部分记录进行排序,以达到整个序列有序
具体实现: 选定一个中间数作为参考,所有元素与之比较,小的调到其左边,大的调到其右边
中间数(枢轴): 可以是第一个数,最后一个数,最中间一个数,任选一个数等(通常取第一个数)
举个例子:
让我用快速排序给{49、38、65、97、76、13、27、49}这一组数排序
1、进行第一次交换
历经12步终于将第一次交换排序好了
2、剩下几次的交换
【算法步骤】
【算法描述】
int Partition(SqList &L,int low,int high)
{//对顺序表L中的子表r[low..high]进行一趟排序,返回枢轴位置
L.r[0] = L.r[low] //用子表的第一个记录做枢轴记录
pivotkey = L.r[low].key;
while(low<high)
{
while(low<high && L.r[high].key>=pivotkey) --high;
L.r[low] = L.r[high]; //将比枢轴记录小的记录移到低端
while(low<high && L.r[low].key<=pivotkey) ++low;
L.r[high] = L.r[low]; //将比枢轴记录大的记录移到高端
}
L.r[low] = L.r[0];//将枢轴记录放到此时low=high的位置 ,也可以写成 L.r[high] = L.r[0];
return low; // return high也可以
}
void QSort(SqList &L,int low,int high)
{//对顺序L快速排序
if(low<high)
{
pivotloc = Partition(L,low,high);
//将L.r[low..high]一分为二,pivotloc为枢轴元素排好位置
Qsort(L,low,pivotloc-1);//对低子表递归排序
Qsort(L,pivotloc+1,high);//对低子表递归排序
}
}
void main()
{
QSort(L,1,L.length); //对顺序表L的1~L.length(所有的元素)个元素进行排序
}
【算法分析】
时间复杂度:平均时间复杂度是:O(nlogn)
空间复杂度:
最优的情况下空间复杂度为:O(logn)
最差的情况下空间复杂度为:O( n )
【算法特点】
- 记录非顺次的移动导致排序方法是不稳定的
- 排序过程需要定位表的下界和上界,所以适合用于顺序结构,很难用于链式结构
- 当n较大时,在平均情况下快速排序是所有内部排序方法中速度最快的一种,所以其适合初始记录无序、n较大时的情况
代码如下:
#include<iostream>
int n,r[100];
using namespace std;
int Partition(int low,int high)
{
int pivotkey;
r[0] = r[low]; //用子表的第一个记录做枢轴记录
pivotkey = r[low];
while(low<high)
{
while(low<high && r[high]>=pivotkey) --high;
r[low] = r[high]; //将比枢轴记录小的记录移到低端
while(low<high && r[low]<=pivotkey) ++low;
r[high] = r[low]; //将比枢轴记录大的记录移到高端
}
r[low] = r[0];
return low;
}
void QSort(int low,int high)
{
if(low<high)
{
int pivotloc;
pivotloc = Partition(low,high);
QSort(low,pivotloc-1);
QSort(pivotloc+1,high);
}
}
int main()
{
cin >> n;
for(int i=1;i<=n;i++)
cin >> r[i];
QSort(1,n);
for(int i=1;i<=n;i++)
cout << r[i]<<" ";
}
运行结果:
建议背下面这个快排模板,代码优美耗时短,上面写的那个代码是课本上的
思想:从这组数左边开始找一个小于枢轴值的数,停下来,
再从这组数的右边开始找一个大于枢轴值的数,停下来,
再把这两个数交换即可
#include<bits/stdc++.h>
using namespace std;
const int N=1e5+10;
int a[N];
int n;
void Qsort(int a[],int l,int r)
{
if(l>=r) return;
int x=a[(l+r)/2],i=l-1,j=r+1;
while(i<j)
{
do i++; while(a[i]<x);
do j--; while(a[j]>x);
if(i<j) swap(a[i],a[j]);
}
Qsort(a,l,j);
Qsort(a,j+1,r);
}
int main()
{
cin>>n;
for(int i=0;i<n;i++) scanf("%d",&a[i]);
Qsort(a,0,n-1);
for(int i=0;i<n;i++) printf("%d ",a[i]);
return 0;
}