一个正整数 N 的因子中可能存在若干连续的数字。例如 630 可以分解为 3×5×6×7,其中 5、6、7 就是 3 个连续的数字。给定任一正整数 N,要求编写程序求出最长连续因子的个数,并输出最小的连续因子序列。
输入格式:
输入在一行中给出一个正整数 N(1<N<2^31 )。
输出格式:
首先在第 1 行输出最长连续因子的个数;然后在第 2 行中按 因子1因子2……*因子k 的格式输出最小的连续因子序列,其中因子按递增顺序输出,1 不算在内。
输入样例:
630
输出样例:
3
5*6*7
#include<iostream>
#include<cmath>
using namespace std;
long long N,a;
int len,start; //start是序列开始的因子,len是连续序列因子的个数
int main()
{
cin>>N;
for(int i=2;i<=(int)sqrt(N);i++) //枚举到根号n即可,因为在根号n到n之间没有连续因子
{
int n=N;
int j=i;
int sum=0;
while(n%j==0) //求连续因子
{
n=n/j;
j++;
sum++;
}
if(sum>len)
{
start=i;
len=sum; //最长连续因子个数更替
}
}
if(start==0) //start为0,说明N是质数,
{
start=N; //质数=1*N
len=1;
}
cout<<len<<endl<<start;
for(int i=start+1;i<start+len;i++)
cout<<"*"<<i;
return 0;
}