YOLOv12 问世!首个兼顾速度与精度的「注意力中枢」实时检测框架

就在昨天,2月19号 ,YOLOv12算法低调发布,YOLOv9,10,11都还没来得及看!!!  

整体汇总一下 yolov12的信息:

    在计算机视觉领域,实时目标检测(如自动驾驶、监控系统)一直追求「快且准」。传统方法依赖CNN,但最近几年,基于注意力机制的Transformer模型凭借强大的上下文建模能力异军突起。然而,Transformer的二次计算复杂度和内存访问瓶颈让它难以在实时场景中落地。今天,一个突破性研究——YOLOv12,它首次让注意力机制在实时目标检测中媲美甚至超越CNN!


一、为什么我们需要YOLOv12?

现有的实时检测框架(如YOLOv10、YOLOv11)虽然优秀,但仍受限于以下问题:

  • CNN的局限性:CNN通过局部卷积捕捉特征,但难以全局关联;

  • Transformer的瓶颈:注意力机制的计算复杂度高(O(L²)),且内存访问效率低;

  • 平衡难题:如何在保证速度的同时提升精度?

YOLOv12的目标是打破这一僵局——用注意力机制实现更快的推理速度和更高的检测精度。

    二、YOLOv12的三大核

    评论
    添加红包

    请填写红包祝福语或标题

    红包个数最小为10个

    红包金额最低5元

    当前余额3.43前往充值 >
    需支付:10.00
    成就一亿技术人!
    领取后你会自动成为博主和红包主的粉丝 规则
    hope_wisdom
    发出的红包

    打赏作者

    莫莫莫i

    你的鼓励将是我创作的最大动力

    ¥1 ¥2 ¥4 ¥6 ¥10 ¥20
    扫码支付:¥1
    获取中
    扫码支付

    您的余额不足,请更换扫码支付或充值

    打赏作者

    实付
    使用余额支付
    点击重新获取
    扫码支付
    钱包余额 0

    抵扣说明:

    1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
    2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

    余额充值