【leetcode第5题—最长回文子串】

目录

介绍

解题思路

代码实现

总结


介绍

给你一个字符串 s,找到 s 中最长的回文子串。

如果字符串的反序与原始字符串相同,则该字符串称为回文字符串。

示例 1:

输入:s = "babad"
输出:"bab"
解释:"aba" 同样是符合题意的答案。

示例 2:

输入:s = "cbbd"
输出:"bb"

提示:

  • 1 <= s.length <= 1000
  • s 仅由数字和英文字母组成

解题思路

动态规划是一种常见的解决问题的方法,其核心思想是将复杂问题分解为简单的子问题,并通过存储子问题的解来避免重复计算。对于最长回文子串问题,我们可以使用动态规划来找到答案。

具体来说,我们可以定义一个二维的dp数组,其中dp[i][j]表示从索引i到j的子串是否为回文串。接下来,我们遍历字符串,对于每一对(i, j),我们检查s[i]和s[j]是否相等,如果相等,我们再检查子串s[i+1][j-1]是否为回文串。如果是,我们将dp[i][j]设置为True。如果j - i + 1大于当前已知的最长回文子串的长度,我们更新最长回文子串的长度和起始位置。

代码实现

class Solution(object):
    def longestPalindrome(self, s):
        """
        :type s: str
        :rtype: str
        """
        if len(s) < 2 or s == s[::-1]:
            return s
        
        n = len(s)
        max_len = 1
        start = 0
        
        dp = [[False] * n for _ in range(n)]
        
        for i in range(n):
            dp[i][i] = True
        
        for j in range(1, n):
            for i in range(j):
                if s[i] == s[j]:
                    if j - i < 3:
                        dp[i][j] = True
                    else:
                        dp[i][j] = dp[i+1][j-1]
                    
                    if dp[i][j] and j - i + 1 > max_len:
                        max_len = j - i + 1
                        start = i
        
        return s[start:start + max_len]

总结

通过动态规划方法,我们可以高效地找到给定字符串中的最长回文子串。通过将复杂问题分解为简单的子问题,并使用存储子问题解的方法,我们避免了重复计算,从而提高了算法的效率。总的来说,这种方法在解决最长回文子串问题上具有很高的实用性和可行性。


希望这篇博客能够帮助你更好地理解如何寻找最长回文子串,并提供了一个实用的解决方案。如果你有任何问题或建议,请随时提出。

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值