目录
介绍
给你一个字符串 s
,找到 s
中最长的回文子串。
如果字符串的反序与原始字符串相同,则该字符串称为回文字符串。
示例 1:
输入:s = "babad" 输出:"bab" 解释:"aba" 同样是符合题意的答案。
示例 2:
输入:s = "cbbd" 输出:"bb"
提示:
1 <= s.length <= 1000
s
仅由数字和英文字母组成
解题思路
动态规划是一种常见的解决问题的方法,其核心思想是将复杂问题分解为简单的子问题,并通过存储子问题的解来避免重复计算。对于最长回文子串问题,我们可以使用动态规划来找到答案。
具体来说,我们可以定义一个二维的dp数组,其中dp[i][j]表示从索引i到j的子串是否为回文串。接下来,我们遍历字符串,对于每一对(i, j),我们检查s[i]和s[j]是否相等,如果相等,我们再检查子串s[i+1][j-1]是否为回文串。如果是,我们将dp[i][j]设置为True。如果j - i + 1大于当前已知的最长回文子串的长度,我们更新最长回文子串的长度和起始位置。
代码实现
class Solution(object):
def longestPalindrome(self, s):
"""
:type s: str
:rtype: str
"""
if len(s) < 2 or s == s[::-1]:
return s
n = len(s)
max_len = 1
start = 0
dp = [[False] * n for _ in range(n)]
for i in range(n):
dp[i][i] = True
for j in range(1, n):
for i in range(j):
if s[i] == s[j]:
if j - i < 3:
dp[i][j] = True
else:
dp[i][j] = dp[i+1][j-1]
if dp[i][j] and j - i + 1 > max_len:
max_len = j - i + 1
start = i
return s[start:start + max_len]
总结
通过动态规划方法,我们可以高效地找到给定字符串中的最长回文子串。通过将复杂问题分解为简单的子问题,并使用存储子问题解的方法,我们避免了重复计算,从而提高了算法的效率。总的来说,这种方法在解决最长回文子串问题上具有很高的实用性和可行性。
希望这篇博客能够帮助你更好地理解如何寻找最长回文子串,并提供了一个实用的解决方案。如果你有任何问题或建议,请随时提出。