问题描述 斐波那契数列大家都非常熟悉。它的定义是:
f(x) = 1 … (x=1,2)
f(x) = f(x-1) + f(x-2) … (x>2)
对于给定的整数 n 和 m,我们希望求出:
f(1) + f(2) + … + f(n) 的值。但这个值可能非常大,所以我们把它对 f(m) 取模。
公式如下
但这个数字依然很大,所以需要再对 p 求模。输入格式 输入为一行用空格分开的整数 n m p (0 < n, m, p < 10^18)输出格式 输出为1个整数,表示答案样例输入2 3 5样例输出0样例输入15 11 29样例输出25
浅谈此题:
这题很难,难在数值大,难在数值大了,会超时!!!
我做了一下这道题,得了四十分。然后发这篇文章是为了求救大佬……
My code:
import java.util.Scanner;
public class Main {
public static void main(String[] args){
Scanner sc = new Scanner(System.in);
//longMax = 9223372036854775807
long n = sc.nextLong();
long m = sc.nextLong();
long p = sc.nextLong();
long t1 = 0L;
long t2 = 1L;
long temp = 0L;
long sum = 0L;
for(long i = 1L; i <= n; i++){
temp = t1 + t2;
sum += temp;
t2 = t1;
t1 = temp;
}
long m1 = 0L;
long m2 = 1L;
long m3 = 0L;
for(long i = 1L; i <= m; i++){
m3 = m1 + m2;
//m3%=p;
m2 = m1;
m1 = m3;
}
System.out.println(sum%m3%p);
}
}