1、map算子
1)理解:通过对DataStream对象调用其map方法,对数据流中的每一个元素进行转换逻辑操作,最终返回每一个输入元素转换后的结果数据继续封装成一个DataStream对象返回(输入多少个元素,就会返回多少个元素,中间过程可以进行一系列的数据结构转换操作)
2)map算子使用入门代码示例
(1)java API代码
package com.flink.datastream.transformation;
import org.apache.flink.api.common.functions.MapFunction;
import org.apache.flink.streaming.api.datastream.DataStreamSource;
import org.apache.flink.streaming.api.datastream.SingleOutputStreamOperator;
import org.apache.flink.streaming.api.environment.StreamExecutionEnvironment;
import java.util.Arrays;
public class MapDemo {
public static void main(String[] args) throws Exception {
// 获取flink的运行环境对象
StreamExecutionEnvironment env = StreamExecutionEnvironment.getExecutionEnvironment();
// 构建数据流对象
DataStreamSource<Integer> collectionDataStreamSource = env.fromCollection(Arrays.asList(1, 2, 3, 4));
// 调用map算子对集合数据源中的每个元素做累加1操作
// new MapFunction<T, O>匿名内部类中泛型的第1个参数类型是数据流输入的数据类型,第2个泛型参数类型是经过map方法转换后返回的数据类型
SingleOutputStreamOperator<String> dataStream = collectionDataStreamSource.map(new MapFunction<Integer, String>() {
@Override
public String map(Integer integer) throws Exception {
return "map"

本文总结了Flink DataStream API中的三种重要Transformation算子:map、flatMap和filter。map算子用于对数据流中的每个元素进行转换操作;flatMap允许每个输入元素转化为任意数量的输出元素;filter算子则用于根据指定条件过滤数据流中的元素。通过Java和Scala API展示了它们的使用示例。
最低0.47元/天 解锁文章
609

被折叠的 条评论
为什么被折叠?



