io-nio-socket步步为营(三)NIO

原理:

运用reactor模式

Selector是核心-分发器A multiplexor of SelectableChannel objects。

能检测任意个注册过的channel上的事件,并分发事件,内部实现不用考虑,封装的好处

 

client没必要用NIO,使用http://luckywnj.iteye.com/blog/1744283中的client

server,

需要多线程的么?workthread?如何写?

 

/**
 * @author timeriver.wang
 * @version 2013-1-7 11:50:33 PM
 */
public class NIOServer {
	public static void main(String[] args) throws Exception {
		ServerSocketChannel serverSocketChannel = ServerSocketChannel.open();
		serverSocketChannel.socket().bind(new InetSocketAddress(8899));
		serverSocketChannel.configureBlocking(false);
		Selector selector = Selector.open();
		serverSocketChannel.register(selector, SelectionKey.OP_ACCEPT);
		
		Charset charset = Charset.forName("UTF-8");
		CharsetDecoder decoder = charset.newDecoder();
		CharsetEncoder encoder = charset.newEncoder();
		ByteBuffer clientBuffer = ByteBuffer.allocate(1024);
		
		while (true) {
			// 貌似两个client同时连,返回也是1?在select处阻塞,这样避免线程卡死耗尽资源?
//		    int sel = selector.select();
			int sel = selector.select(3000);
			if (sel == 0) {
				continue;
			}
			Set<SelectionKey> set = selector.selectedKeys();
			System.out.println(set.size());
			Iterator<SelectionKey> keyIter = set.iterator();
			while (keyIter.hasNext()) {
				SelectionKey key = keyIter.next();
				System.out.println(key);
				// channel is ready to accept a new socket connection
				if (key.isAcceptable()) {
					SocketChannel serverChannel = ((ServerSocketChannel) key.channel()).accept();
//					为serverChannel再设置一次否则,java.nio.channels.IllegalBlockingModeException,
					serverChannel.configureBlocking(false);
					SelectionKey skey = serverChannel.register(key.selector(),SelectionKey.OP_READ);
					System.out.println("acceptable: serverChannel="+serverChannel+",skey="+skey);
				}else if (key.isReadable()) {// channel is ready for reading
					SocketChannel serverChannel = (SocketChannel) key.channel();
					clientBuffer.clear();
					long bytesRead = serverChannel.read(clientBuffer);
					if (bytesRead == -1) {
						serverChannel.close();
					} else {
						clientBuffer.flip();
						String receivedMsg = decoder.decode(clientBuffer).toString();
						System.out.println("receive msg: " + receivedMsg);
						SelectionKey skey = serverChannel.register(selector,SelectionKey.OP_WRITE);
						System.out.println("readable "+skey);
						skey.attach(receivedMsg);
					}
				} else if (key.isWritable()) { //channel is ready for writing
					SocketChannel serverChannel = (SocketChannel) key.channel();
					String sendMsg = (String) key.attachment();
					ByteBuffer block = encoder.encode(CharBuffer.wrap("Hello !"+sendMsg));
					serverChannel.write(block);
					SelectionKey skey = serverChannel.register(key.selector(),SelectionKey.OP_READ);
					System.out.println("write "+skey);
				}
				keyIter.remove();
			}
		}
	}
}
【6层】一字型框架办公楼(含建筑结构图、计算书) 1、资源项目源码均已通过严格测试验证,保证能够正常运行; 2、项目问题、技术讨论,可以给博主私信或留言,博主看到后会第一时间与您进行沟通; 3、本项目比较适合计算机领域相关的毕业设计课题、课程作业等使用,尤其对于人工智能、计算机科学与技术等相关专业,更为适合; 4、下载使用后,可先查看README.md或论文文件(如有),本项目仅用作交流学习参考,请切勿用于商业用途。 5、资源来自互联网采集,如有侵权,私聊博主删除。 6、可私信博主看论文后选择购买源代码。 1、资源项目源码均已通过严格测试验证,保证能够正常运行; 2、项目问题、技术讨论,可以给博主私信或留言,博主看到后会第一时间与您进行沟通; 3、本项目比较适合计算机领域相关的毕业设计课题、课程作业等使用,尤其对于人工智能、计算机科学与技术等相关专业,更为适合; 4、下载使用后,可先查看README.md或论文文件(如有),本项目仅用作交流学习参考,请切勿用于商业用途。 5、资源来自互联网采集,如有侵权,私聊博主删除。 6、可私信博主看论文后选择购买源代码。 1、资源项目源码均已通过严格测试验证,保证能够正常运行; 2、项目问题、技术讨论,可以给博主私信或留言,博主看到后会第一时间与您进行沟通; 3、本项目比较适合计算机领域相关的毕业设计课题、课程作业等使用,尤其对于人工智能、计算机科学与技术等相关专业,更为适合; 4、下载使用后,可先查看README.md或论文文件(如有),本项目仅用作交流学习参考,请切勿用于商业用途。 5、资源来自互联网采集,如有侵权,私聊博主删除。 6、可私信博主看论文后选择购买源代码。
深度学习是机器学习的一个子领域,它基于人工神经网络的研究,特别是利用多层次的神经网络来进行学习和模式识别。深度学习模型能够学习数据的高层次特征,这些特征对于图像和语音识别、自然语言处理、医学图像分析等应用至关重要。以下是深度学习的一些关键概念和组成部分: 1. **神经网络(Neural Networks)**:深度学习的基础是人工神经网络,它是由多个层组成的网络结构,包括输入层、隐藏层和输出层。每个层由多个神经元组成,神经元之间通过权重连接。 2. **前馈神经网络(Feedforward Neural Networks)**:这是最常见的神经网络类型,信息从输入层流向隐藏层,最终到达输出层。 3. **卷积神经网络(Convolutional Neural Networks, CNNs)**:这种网络特别适合处理具有网格结构的数据,如图像。它们使用卷积层来提取图像的特征。 4. **循环神经网络(Recurrent Neural Networks, RNNs)**:这种网络能够处理序列数据,如时间序列或自然语言,因为它们具有记忆功能,能够捕捉数据中的时间依赖性。 5. **长短期记忆网络(Long Short-Term Memory, LSTM)**:LSTM 是一种特殊的 RNN,它能够学习长期依赖关系,非常适合复杂的序列预测任务。 6. **生成对抗网络(Generative Adversarial Networks, GANs)**:由两个网络组成,一个生成器和一个判别器,它们相互竞争,生成器生成数据,判别器评估数据的真实性。 7. **深度学习框架**:如 TensorFlow、Keras、PyTorch 等,这些框架提供了构建、训练和部署深度学习模型的工具和库。 8. **激活函数(Activation Functions)**:如 ReLU、Sigmoid、Tanh 等,它们在神经网络中用于添加非线性,使得网络能够学习复杂的函数。 9. **损失函数(Loss Functions)**:用于评估模型的预测与真实值之间的差异,常见的损失函数包括均方误差(MSE)、交叉熵(Cross-Entropy)等。 10. **优化算法(Optimization Algorithms)**:如梯度下降(Gradient Descent)、随机梯度下降(SGD)、Adam 等,用于更新网络权重,以最小化损失函数。 11. **正则化(Regularization)**:技术如 Dropout、L1/L2 正则化等,用于防止模型过拟合。 12. **迁移学习(Transfer Learning)**:利用在一个任务上训练好的模型来提高另一个相关任务的性能。 深度学习在许多领域都取得了显著的成就,但它也面临着一些挑战,如对大量数据的依赖、模型的解释性差、计算资源消耗大等。研究人员正在不断探索新的方法来解决这些问题。
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值