Tensorflow使用
wnloverforever
这个作者很懒,什么都没留下…
展开
-
tensorflow---读取数据集
def read_and_decode(filename): filename_queue = tf.train.string_input_producer([filename]) reader = tf.TFRecordReader() _,serialized_example = reader.read(filename_queue) features = ...原创 2019-11-30 12:16:18 · 510 阅读 · 0 评论 -
Tensorflow--基础api--1
tf.train.batch() tf.train.batch(tensors, batch_size, num_threads=1, capacity=32, enqueue_many=False, shapes=None, dynamic_pad=False, allow_smaller_final_batch=False, shared_n...原创 2019-11-21 17:45:16 · 137 阅读 · 0 评论 -
Tensorflow----训练
为了充分使用多GPU加速训练,我们使用并联式训练方法(这个名称忘了),因此需要把每一次训练的梯度更新给取出来(这个与训练方法有关) 获取所有变量 train_variables = tf.trainable_variables() 计算梯度 tower_grads = [] grads = optim.compute_gradients(loss,var_list=train_varia...原创 2019-11-21 10:15:36 · 118 阅读 · 0 评论 -
tensorflow----构建net基本函数
tf.nn.conv2d( inputs, out_dim, k, strides=strides, padding='same') inputs:[batch,height,width,channels] out_dim:代表输出几个channels,其他函数会自动判断 k:卷积核大小,如果长宽一样,那么就给一个数字即可 stride:卷积步长,同样的如果长宽一样,那么就给一个数字即可...原创 2019-11-20 16:04:53 · 128 阅读 · 0 评论 -
Tensorflow---变量
1.tf.Variable(0,name=‘steps’,training=True) 创建变量,初始值为0,名称为steps steps = tf.Variable(0,name='steps',training=True) 2.optim=tf.train.AdamOptimizer(learning_rate=lr) 使用adam优化器,学习率为lr,这里的lr有俩种方式定义,第一种为固定...原创 2019-11-18 11:02:24 · 104 阅读 · 0 评论 -
Tensorflow使用多线程
Tensorflow的Session对象支持多线程,可以在同一个Session中创建多个线程,默认是cpu有多少个核,就启动多少个线程。 Tensorflow提供了俩个类来实现对Session中多线程的管理:tf.Coordinator和tf.QueueRunner,这俩个类必须一起使用。 Coordinator类用来管理Session中的多个线程。使用tf.tain.Coordinator()来...转载 2019-11-18 10:31:16 · 979 阅读 · 0 评论