一、CAP定理: 指的是在一个分布式系统中,Consistency(一致性)、 Availability(可用性)、Partition tolerance(分区容错性),三者不可同时获得
一致性(C):所有节点都可以访问到最新的数据;锁定其他节点,不一致之前不可读
可用性(A):每个请求都是可以得到响应的,不管请求是成功还是失败;被节点锁定后 无法响应
分区容错性(P):除了全部整体网络故障,其他故障都不能导致整个系统不可用,;节点间通信可能失败,无法避免
二、CAP理论就是说在分布式存储系统中,最多只能实现上面的两点。而由于当前的网络硬件肯定会出现延迟丢包等问题,所以分区容忍性是我们必须需要实现的。所以我们只能在一致性和可用性之间进行权衡
CA: 如果不要求P(不允许分区),则C(强一致性)和A(可用性)是可以保证的。但放弃P的同时也
就意味着放弃了系统的扩展性,也就是分布式节点受限,没办法部署子节点,这是违背分布式系统设计
的初衷
CP: 如果不要求A(可用),每个请求都需要在服务器之间保持强一致,而P(分区)会导致同步时间无限
延长(也就是等待数据同步完才能正常访问服务),一旦发生网络故障或者消息丢失等情况,就要牺牲用户
的体验,等待所有数据全部一致了之后再让用户访问系统
AP:要高可用并允许分区,则需放弃一致性。一旦分区发生,节点之间可能会失去联系,为了高可用,每
个节点只能用本地数据提供服务,而这样会导致全局数据的不一致性。
结论:
分布式系统中P,肯定要满足,所以只能在C和A中二选一
没有最好的选择,最好的选择是根据业务场景来进行架构设计
CP : 适合支付、交易类,要求数据强一致性,宁可业务不可用,也不能出现脏数据
AP: 互联网业务,比如信息流架构,不要求数据强一致,更想要服务可用