若A、B为同阶矩阵且A、B均可逆,则AB亦可逆

### 回答1: 正确。 由于 A 和 B 可逆阵,因此存在它们的逆矩阵 A^-1 和 B^-1。 我们有: AB = A(BI) = A(BB^-1) = (AB)B^-1 其中 BI 和 BB^-1 为单位矩阵。 同理,我们也可以得到: BA = (AB)A^-1 由此可知: AB = BA 因此,若矩阵 A 和 B 可逆阵,则它们的乘积满足交换律。 ### 回答2: 若矩阵 A 和 B 可逆阵,则意味着存在逆矩阵 A^(-1) 和 B^(-1)。 我们可以对等式 AB = BA 进行推导: 左乘 A^(-1): A^(-1)(AB) = A^(-1)(BA) (A^(-1)A)B = A^(-1)(BA) IB = A^(-1)(BA) (其中 I 为单位矩阵) B = A^(-1)(BA) 右乘 B^(-1): (BA)B^(-1) = (A^(-1)(BA))B^(-1) B(AB^(-1)) = A^(-1)((BA)B^(-1)) B(A^(-1)A) = A^(-1)((BA)B^(-1)) BI = A^(-1)((BA)B^(-1)) (其中 I 为单位矩阵) B = A^(-1)((BA)B^(-1)) 根据以上推导,我们可以发现,在矩阵 A 和 B 可逆阵的情况下,A 与 B 的乘积 AB 和 BA 是相等的。这是因为 A 和 B 的逆矩阵 A^(-1) 和 B^(-1) 的存在,使得它们可以互相抵消,保持乘法运算的结果一致。 总结起来,若矩阵 A 和 B 可逆阵,则 AB = BA。 ### 回答3: 如果矩阵A和B可逆阵,即存在逆矩阵A^-1和B^-1,那么我们可以证明AB=BA。 首先,我们使用矩阵乘法规则来展开AB和BA。 假设A为m×n的矩阵,B为n×p的矩阵,那么AB为m×p的矩阵,BA为n×n的矩阵。 现在我们来展开ABAB = A(B的第1列) + A(B的第2列) + ... + A(B的第p列) = A[b1 b2 ... bp] = [Ab1 Ab2 ... Abp] 其中,b1, b2, ..., bp代表B的列向量。 类似地,我们来展开BA: BA = B(A的第1行) + B(A的第2行) + ... + B(A的第m行) = B[a1; a2; ...; am] = [Ba1; Ba2; ...; Bam] 其中,a1, a2, ..., am代表A的行向量。 由于矩阵乘法具有结合律,因此Abi等于A的第i列与向量bi的乘积。同样地,Ba1等于B的第一行与向量a1的乘积。 而我们已知A和B可逆阵,即存在逆矩阵A^-1和B^-1,使得AA^-1 = A^-1A = I,BB^-1 = B^-1B = I。 因此, [Ab1 Ab2 ... Abp] = A[b1 b2 ... bp] = AI = A, (1) [Ba1; Ba2; ...; Bam] = B[a1; a2; ...; am] = BI = B. (2) 从式(1)和式(2)可以看出,AB = BA成立。 故若矩阵A和B可逆阵,则AB = BA。
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

历史五千年

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值