10W+的爆款文章都是如何写出来的?

凡是让你着迷的事物,背后往往都是满满的套路。——二师兄

在这里插入图片描述
今天给大家分享的一本书是关于爆款文章写作的——《爆款写作课》,看完之后真是感慨颇多。感慨什么呢?原来每一篇爆款文章都是满满的套路。有些文章是有真才实学,再加上写作技巧,短时间内达到10W+,100W+的阅读量,真是人气爆棚;有些文章则完全是技巧的堆砌,不值一提,却获得你获得不到的人气。

这本书适合什么读者来看呢?如果你是内容运营者或者销售者(互联网运营销售),你可以读读这本书;如果你想了解爆款文章是如何写出来的,你也可以读读这本书;如果你是内容运营的小白,那么你可能会大开眼界;如果你是文学类作家,书中有些技巧对你有用,但可能没有你想象中的那么大。
在这里插入图片描述
看完这本书再对照《得到》和其他付费课程的推销策略,简直是按照书中的套路一条条在设计。难怪那么多人会去购买那些课程,因为课程背后的营销策略抓住了读者内心最深处的欲望。这里就暂且不讨论那些课程的好坏、知识付费和碎片化学习的问题。

整体来说,书中从以下几个方面来介绍写作的技巧:

  • 写书的整个流程及相关技巧:选题、找素材、列提纲、写初稿、修改定稿。
  • 动笔之前要思考用户的痛点及能够用户带来什么价值。
  • 读者愿意阅读、分享、购买等行动的底层动力分析。
  • 如何通过筛选题材来吸引读者。
  • 如何通过标题来吸引读者。
  • 如何通过内容的环环相扣来吸引读者。
  • 写作的技巧和作者所站立场等细化介绍。
  • 如何通过说服力来引导读者阅读或购买。
  • 具体案例分析。

通过这本书我学习到的也是想强调的重点是:无论使用什么技巧,前提条件是你的作品能够为读者解决问题、解决痛点、带来价值!而所谓的标题、选题以及其他相关技巧只是在其基础上的辅助手段。如果把它们当成主要方式,可能只会画虎不成反类犬。
在这里插入图片描述

另外这本书的缺点和不足也很明显。第一,全书只有270页,页面却有大量留白和可有可无的插图,仅仅有效内容可能只有一半多一点;第二,书中大量内容重复,前面章节在说,后面章节也在说,不同的主题引用同样的内容;第三,整体章节内容排版不够流畅,显得逻辑上有些混乱,给人一种不像专业作家的写作水平,而更像是各种东拼西凑(说的有些严厉);第四:实战部分引入实例内容占用大量篇幅;第五,如果是你是文学作者,收获可能不会太大。

下面依照老规矩,给大家分享这本书读书笔记之思维导图。这里只贴出前三节的导图内容,全部内容(Xmind Zen格式或PNG格式)大家可关注微信公众号《程序新视界》,回复“爆款写作课”获得。

在这里插入图片描述

在这里插入图片描述
在这里插入图片描述

为了不影响阅读体验,其余章节,大家可关注微信公众号《程序新视界》,回复“爆款写作课”获得。


程序新视界

关注程序员的职场生涯,大量优质学习资源

csdn-微信公众号

<think>嗯,用户想构建一个用于改爆款文章的智能体。首先,我需要明确他们的需求是什么。爆款文章通常是为了保持原意但调整表达方式,避免重复,或者适应不同的受众。所以,核心是自然语言处理中的文本改任务,可能涉及同义词替换、句子结构重组、段落调整等。 接下来,我得考虑技术方案。可能需要用到预训练的语言模型,比如GPT系列、T5或者BART,这些模型在文本生成方面表现不错。用户可能需要一个能够理解原文并生成流畅改的模型。同时,可能需要一些定制化的训练,比如在特定领域的数据集上微调,以提高改质量。 然后,数据准备是关键。需要收集大量的爆款文章作为训练数据,并且可能需要人工标注改后的版本,或者使用数据增强的方法生成配对数据。数据预处理步骤包括清洗、分词、去除噪声等,确保模型训练的输入质量。 模型架构方面,T5是一个不错的选择,因为它将文本到文本的任务统一处理,适合改任务。用户可能需要调整模型结构,比如添加注意力机制或者调整层数,以优化生成效果。此外,评估指标也很重要,比如BLEU、ROUGE、BERTScore等,来衡量改后的文本与原文的相似度和流畅度。 用户可能还关心实际应用中的问题,比如处理不同风格的文章,或者保持改后的文本的原创性。这时候可能需要引入查重机制,或者结合规则引擎来确保改后的内容不会与原作过于相似。此外,部署方面可能需要考虑模型的推理速度,使用轻量化模型或者模型蒸馏技术来提升性能。 最后,还需要考虑伦理和法律问题,比如版权问题,确保改后的文章不侵犯原作者的权益。可能需要添加引用或进行必要的调整,避免法律风险。总结下来,构建这样的智能体需要综合自然语言处理技术、数据工程、模型优化以及法律合规等多方面的考虑。</think>### 构建爆款文章智能体的技术方案 #### 一、核心需求分析 爆款文章需要实现以下核心功能: 1. 保持原意不变的前提下优化表达形式 2. 调整语句结构避免重复检测 3. 适应不同平台的发布规范 4. 提升内容可读性和传播性 #### 二、技术实现框架 采用分层架构设计: ``` 数据层 -> 模型层 -> 后处理层 -> 评估层 ↘规则引擎↗ ``` #### 三、关键模块实现 **1. 数据预处理** - 构建平行语料库:收集$10^4$量级的原文/改对 - 文本向量化:使用$BERT_{base}$生成768维语义向量 - 数据增强:通过以下方式扩展数据集: $$P_{aug}(x)=λ_1 P_{syn}(x)+λ_2 P_{struct}(x)+λ_3 P_{para}(x)$$ 其中$λ_1+λ_2+λ_3=1$[^1] **2. 模型选择与训练** 推荐使用改进的T5模型架构: $$y = \text{Decoder}(\text{Encoder}(x) \oplus \text{StyleEmbedding}(s))$$ 训练目标函数: $$\mathcal{L} = α\mathcal{L}_{CE} + β\mathcal{L}_{BLEU} + γ\mathcal{L}_{Diversity}$$ **3. 后处理规则引擎** 实现核心功能: - 敏感词过滤:基于AC自动机实现$O(n)$复杂度检测 - 格式标准化:使用正则表达式规范标点、空格 - 可读性优化:根据Flesch-Kincaid公式调整文本: $$\text{Readability} = 206.835 - 1.015\left(\frac{\text{words}}{\text{sentences}}\right) - 84.6\left(\frac{\text{syllables}}{\text{words}}\right)$$ #### 四、评估指标体系 构建三维评估矩阵: $$Q = [\text{语义相似度}, \text{文本新颖度}, \text{传播指数}]$$ 其中语义相似度计算采用: $$\text{Similarity} = \frac{\boldsymbol{v}_s \cdot \boldsymbol{v}_t}{\|\boldsymbol{v}_s\| \|\boldsymbol{v}_t\|}$$ #### 五、部署优化策略 1. 模型量化:将FP32转为INT8,体积压缩4倍 2. 缓存机制:建立LRU缓存池存储高频改模式 3. 动态加载:按需加载不同领域子模型 $$\min_{M} \sum_{i=1}^n \mathbb{I}(d_i \in D_m) \cdot \text{load}_m$$ ```python class ArticleRewriter: def __init__(self): self.encoder = load_model('encoder.pth') self.decoder = load_model('decoder.pth') def rewrite(self, text): embeddings = self.encoder(text) return self.decoder(embeddings, style='viral') ```
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

程序新视界

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值