- 博客(8)
- 资源 (2)
- 收藏
- 关注
原创 音频处理库大PK:四种主流库在计算mel频谱时性能如何?
音频信号处理在各种应用中都发挥着重要的作用,如语音识别、音乐信息检索、语音合成等。其中,Mel频谱是一种常用的频域特征表示方法,用于描述人类听觉系统对频率的敏感程度。在深度学习音频领域,mel频谱是最常用的音频特征。在本文中,我们将对四个常用的音频处理库——audioflux、torchaudio、librosa和essentia——进行性能测试,以评估它们在计算Mel频谱时的效率。
2023-04-25 14:39:16 639
原创 这样的速度,还有谁?一个 issue 引发的性能大跃进
虽然是学习练手的小项目,但也信心满满,因为核心算法大部分都是 C 实现和 Python 包装的,想着怎么着也比纯 Python 实现的库快些,然后和其它相关 Python 库也做了简单的性能比对,结果确实是比较快,但没想到后面翻车了!图依次为 Linux/AMD ,macOS/Intel 下的评测结果。
2023-04-25 13:55:52 202
原创 这个小项目,上周被国外 AI 新闻网站报道,前些天又上了 github 热榜
因为是学习练手的小项目,放 github 上面后就没有太多跟进了,后来看到国内几个有名的 github 项目周报博主,想着提下 issure ,如果被收录发表的话,得到些关注获得一些 star 也是很开心的,没想到一个也没收录发表,issure 都是被忽略跳过的。疫情期间在校花了几个月时间,写了这个小项目,是关于音频特征提取和分析的,自己是 AI 专业研究音频的,但受限于对音频特征的理解,做研究时总感觉缺乏“底料”,所以当做是学习练手做了这个小东西。当时还是首页报道,赶快截了图。
2023-04-11 08:27:26 137
原创 音频入门: 最全面详细的Mel频谱和MFCC讲解
在音频领域,mel频谱和mfcc是非常重要的特征数据,在深度学习领域通常用此特征数据作为网络的输入训练模型,来解决音频领域的各种分类、分离等业务,如端点侦测、节奏识别、和弦识别、音高追踪、乐器分类、音源分离、回声消除等相关业务。当然,针对深度学习音频领域的业务,不是用下这两个特征、选几个网络、打个标签,放数据训练就完事了, 仅仅基于mel频谱和mfcc这两个特征,解决好上述业务某些情况下还是远远不够的,熟悉这些特征的内在逻辑性、衍生细节和延展,才能更好的结合深度学习解决业务问题。
2023-04-05 00:41:43 2336
原创 开源项目audioFlux: 一个系统的音频特征提取库
是一个Python和C实现的库,提供音频领域系统、全面、多维度的特征提取与组合,结合各种深度学习网络模型,进行音频领域的业务研发,下面从时频变换、频谱重排、倒谱系数、解卷积、谱特征、音乐信息检索六个方面简单阐述其相关功能。
2023-04-05 00:14:58 569
原创 C#标识符问题
C#中的标识符分这么几种:C#关键字、类型名、变量名、方法名。思考回忆下【标识符命名的规则】其中有这么几条值得注意: 其一,C#关键字统统为小写,什么是关键字?它是编译器内建识别的标识符,是最为底层的标识符,所以类型名、变量名、方法名都不能和它重名,这在任何语言中都是一样的;C#关键字有哪些?这个看似简单的问题,其实还真不容易说的清楚,最好分类总结,C#的关键字已不是C语言中32个关键
2011-11-19 13:23:16 4088
原创 谈谈javascript那些操蛋的事
1. 永远不要写function _name(){…}的形式,要养成var _name=function(){}的习惯。“Javascript中函数是头等公民”,意味着引擎对函数语句的优先处理,这样会导致你的程序很混乱,不仅如此,而且不同的浏览器引擎在处理函数语句的一些操作时,比如重写、apply调用、eval生成等等存在很大差异,如果你不想碰上这些潜在的危险,请养成良好的习惯,记住
2011-11-19 12:37:07 1371
原创 Javascript传奇
这是一个深刻的话题,也许我们学某一样语言时都要顾问一下布道者,但我这里给出一个Javascript大致的发展轨迹,最后给出客观中肯的评价。
2011-02-28 16:13:00 1114
空空如也
TA创建的收藏夹 TA关注的收藏夹
TA关注的人