两垂直线斜率乘积为-1的证明

如上图所示,直线L1和直线L2相互垂直,求证L1和L2的斜率m_{1}*m_{2}=-1

求证过程如下:

设A点坐标为A(x_{2},y_{2}),B点坐标为B(x,y),C点坐标为C(x_{1},y_{1})

可知直线L1的斜率为:m_{1}=\frac{y_{1}-y}{x_{1}-x},直线L2的斜率为:m_{2}=\frac{y_{2}-y}{x_{2}-x}

又因为\triangle ABC是直角三角形,所以(AB)^{2}+(BC)^{2}=(AC)^{2}

(AB)^{2}=(y_{2}-y)^{2}+(x_{2}-x)^2,

(BC)^{2}=(y_{1}-y)^2+(x_{1}-x)^{2}

(AC)^{2}=(y_{1}-y_{2})^2+(x_{1}-x_{2})^2,

(y_{2}-y)^{2}+(x_{2}-x)^2 + (y_{1}-y)^2+(x_{1}-x)^{2} = (y_{1}-y_{2})^2+(x_{1}-x_{2})^2

<==>     x^{2}-xx_{1}-xx_{2}+x_{1}x_{2}+y^{2}-yy_{1}-yy_{2}+y_{1}y_{2}=0

<==>    (x-x_{1})(x-x_{2}) + (y-y_{1})(y-y_{2}) = 0

<==>    \frac{(y-y_{1})(y-y_{2})}{(x-x_{1}))(x-x_{2})} = -1

最后得m_{1}m_{2}=-1

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值