题意:
维护一个数据结构,能够支持三种操作:
1、将p,q元素并入一个集合中
2、求出p元素所在集合元素个数、元素之和
3、把元素p从原集合移动到元素q所在集合
显然是一道并查集的题目,需要额外维护的数据是size[]和sum[],这都是很容易实现的。
问题在于如何进行第三个操作
1、如果只是纯粹朴素的移动,一旦p是个父节点,会使得把p的所有子节点也给带走,所以这么做法行不通
2、这时候就想到解决图论的一个基本方法(从网上学来的),拆点。把一个点拆成A和A'。A->A'连一条边表示A’是A的父亲。此后在Union操作的时候,把其他的结点都连接到A'的而不是A。这样杜绝了A成为父节点的情况,A的移动不再收到情况1时候的影响。并且即使A‘点仍留在那里,但A’指向的是原来A集合所在的集合,保证了其不受影响。
#include <bits/stdc++.h>
using namespace std;
const int maxn = 100000;
const int MM = maxn*2 + 100;
int fa[MM];
int num[MM];
int sum[MM];
inline void init(int _n)
{
for (int i = 1 ; i <= _n ; ++i)
{
num[i+_n] = 1;
sum[i+_n] = i;
fa[i] = fa[i+_n] = i+_n;
//将节点所存储的信息全放在A'上,
//因为查询的始终是父节点的数据
}
}
int find_fa(int x)
{
if(fa[x] == x) return x;
int tx = find_fa(fa[x]);
return fa[x] = tx;
}
void Union(int x,int y)
{
int fx = find_fa(x);
int fy = find_fa(y);
if(fx != fy)
{
fa[fy] = fx;
num[fx] += num[fy];
sum[fx] += sum[fy];
}
}
void getInfo(int x)
{
int fx = find_fa(x);
cout <<num[fx] << ' ' << sum[fx] << endl;
}
int N,K;
int main()
{
int n,m;
int x,y,z;
while(cin >> n >> m)
{
init(n);
while(m--)
{
cin >> z;
if(z == 3)
{
cin >> x;
getInfo(x);
}
else if (z == 1)
{
cin >> x >> y ;
Union(x,y);
}
else if (z == 2)
{
cin >> x >> y;
int fy = find_fa(y);
int fx = find_fa(x);
if(fx == fy) continue;
num[fx]-- ; num[fy]++;
sum[fx]-= x; sum[fy]+=x;
fa[x] = fy;
}
}
}
return 0;
}