题目大意:
假设你有一组数列:
给出一系列三元组(l,r,val) 表示[l,r]的区间和为val
不断地给出这样的三元组,有时候三元组会有不可能地情况出现。
问有多少个错误的情况出现:
其实自己想,很难想到这个题目居然是道并查集
额外维护一个数组sum[x] 表示从头节点fx->x 的区间和
1.如果询问(x,y,val)是,xy在同一个集合里,那么就可以判断sum(x)-sum(y) 是否等于val
2.如果xy不再同一个集合里,那么进行Union操作
此时明确一点,我们只需要更新sum[fy],因为fy的子节点会在后续的findfather中更新
如何求出sum[fy]呢,也就是fx->fy,我们假设这是一个向量。
已知 x->y = val fx->x = sum[x] fy->y = sum[y]
fx->fy = fx->x + x->y + y-> fy = fx->x + x->y - fy->y = sum[x] - sum[y] + val
还有一个细节,对于区间和有时候我们也不明确
所以干脆定义成(x,y,val) 表示区间(x,y]的和,便于与(y,xxxxx]合并,所以在每一步前x--
#include <bits/stdc++.h>
using namespace std;
const int maxn = 220000;
int fa[maxn];
int sum[maxn];
inline void init(int _n)
{
for (int i = 0 ; i <= _n ; ++i)
{
fa[i] = i;
sum[i] = 0;
}
}
int ans = 0;
int find_fa(int x)
{
if(fa[x] == x) return x;
int tx = find_fa(fa[x]);
sum[x] += sum[fa[x]];
return fa[x] = tx;
}
void Union(int x,int y,int z)
{
int fx = find_fa(x);
int fy = find_fa(y);
if(fx != fy)
{
fa[fy] = fx;
sum[fy] = sum[x] - sum[y] + z;
}
else
{
if(sum[y] - sum[x] != z)
ans++;
}
}
int N,M;
int main()
{
while(cin >> N >> M){
int x,y,z;
init(N);
ans = 0;
while(M--)
{
cin >> x >> y >> z;
x--;
Union(x,y,z);
}
cout << ans << endl;
}
return 0;
}