多标签的focal_loss(基于yolov3的confidence_loss修改)

      最近在修改yolov3的损失函数,想提升模型性能,了解了focal_loss,记录一下这脑子转不动的一天。

   1.二分类Loss表达式

      首先,了解一下损失函数。p为预测概率,值在0-1之间,y为真实标签,只有两个值,存在1(1)与否(0)。如果存在,则我们计算的算是就是预测准确的损失,否则就是预测不存在的损失。

    2. Focal_loss表达式

       二分类的focal_loss表达式时基于上式演化而来的,首先我们获得不同真实标签时,概率的表达式。

       之后,我们将此概率代入focal_lossb表达式,如下图,其中pt的取值是根据真实标签获取的。   

在这里插入图片描述

 

      详细拆分后,具体公式如下所示:

           

评论 2
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值