有 n 个气球,编号为0 到 n-1,每个气球上都标有一个数字,这些数字存在数组 nums 中。
现在要求你戳破所有的气球。如果你戳破气球 i ,就可以获得 nums[left] * nums[i] * nums[right] 个硬币。 这里的 left 和 right 代表和 i 相邻的两个气球的序号。注意当你戳破了气球 i 后,气球 left 和气球 right 就变成了相邻的气球。
求所能获得硬币的最大数量。
说明:
你可以假设 nums[-1] = nums[n] = 1,但注意它们不是真实存在的所以并不能被戳破。
0 ≤ n ≤ 500, 0 ≤ nums[i] ≤ 100
示例:
输入: [3,1,5,8]
输出: 167
解释: nums = [3,1,5,8] --> [3,5,8] --> [3,8] --> [8] --> []
coins = 3*1*5 + 3*5*8 + 1*3*8 + 1*8*1 = 167
来源:力扣(LeetCode)
链接:https://leetcode-cn.com/problems/burst-balloons
著作权归领扣网络所有。商业转载请联系官方授权,非商业转载请注明出处。
反过来想,我们不从中取球,而是从中添加球。
如下图所示,第一次取8,第二次取3,第三次取5,第四次取1。当然,你第一次可以取3,第二次可以取5……这里只是举一个例子,这个例子刚好是解。
public int memo[][];
public int val[];
public int maxCoins(int[] nums) {
int n = nums.length;
val = new int[n+2];
for (int i=1; i<=n; i++) {
val[i] = nums[i-1];
}
val[0] = val[n+1] = 1;
memo = new int[n+2][n+2];
for (int i=0; i<n+2; i++) {
Arrays.fill(memo[i], -1);
}
return dfs(0, n+1);
}
public int dfs(int left, int right) {
if (left >= right-1) {
return 0;
}
if (memo[left][right] != -1) {
return memo[left][right];
}
for (int i=left+1; i<right; i++) {
int sum = val[left] * val[i] * val[right];
sum += dfs(left, i) + dfs(i, right);
memo[left][right] = Math.max(memo[left][right] , sum);
}
return memo[left][right];
}
DP解法,其实能把上面的dfs+记忆化相同,DP就很好去理解了。以下来自题解。
按照方法一的思路,我们发现我们可以通过变换计算顺序,从「自顶向下」的记忆化搜索变为「自底向上」的动态规划。
令 dp[i][j]dp[i][j]dp[i][j] 表示填满开区间 (i,j)(i,j)(i,j) 能得到的最多硬币数,那么边界条件是 i≥j−1i \geq j-1i≥j−1,此时有 dp[i][j]=0dp[i][j]=0dp[i][j]=0。
可以写出状态转移方程:
最终答案即为 dp[0][n+1]dp[0][n+1]dp[0][n+1]。实现时要注意到动态规划的次序。
class Solution {
public:
int maxCoins(vector<int>& nums) {
int n = nums.size();
vector<vector<int>> rec(n + 2, vector<int>(n + 2));
vector<int> val(n + 2);
val[0] = val[n + 1] = 1;
for (int i = 1; i <= n; i++) {
val[i] = nums[i - 1];
}
for (int i = n - 1; i >= 0; i--) {
for (int j = i + 2; j <= n + 1; j++) {
for (int k = i + 1; k < j; k++) {
int sum = val[i] * val[k] * val[j];
sum += rec[i][k] + rec[k][j];
rec[i][j] = max(rec[i][j], sum);
}
}
}
return rec[0][n + 1];
}
};
作者:LeetCode-Solution
链接:https://leetcode-cn.com/problems/burst-balloons/solution/chuo-qi-qiu-by-leetcode-solution/
来源:力扣(LeetCode)
著作权归作者所有。商业转载请联系作者获得授权,非商业转载请注明出处。