戳气球(dfs+记忆化 / DP)

有 n 个气球,编号为0 到 n-1,每个气球上都标有一个数字,这些数字存在数组 nums 中。

现在要求你戳破所有的气球。如果你戳破气球 i ,就可以获得 nums[left] * nums[i] * nums[right] 个硬币。 这里的 left 和 right 代表和 i 相邻的两个气球的序号。注意当你戳破了气球 i 后,气球 left 和气球 right 就变成了相邻的气球。

求所能获得硬币的最大数量。

说明:

    你可以假设 nums[-1] = nums[n] = 1,但注意它们不是真实存在的所以并不能被戳破。
    0 ≤ n ≤ 500, 0 ≤ nums[i] ≤ 100

示例:

输入: [3,1,5,8]
输出: 167
解释: nums = [3,1,5,8] --> [3,5,8] -->   [3,8]   -->  [8]  --> []
     coins =  3*1*5      +  3*5*8    +  1*3*8      + 1*8*1   = 167

来源:力扣(LeetCode)
链接:https://leetcode-cn.com/problems/burst-balloons
著作权归领扣网络所有。商业转载请联系官方授权,非商业转载请注明出处。

 

反过来想,我们不从中取球,而是从中添加球。

如下图所示,第一次取8,第二次取3,第三次取5,第四次取1。当然,你第一次可以取3,第二次可以取5……这里只是举一个例子,这个例子刚好是解。

	public int memo[][];
	public int val[];
    public int maxCoins(int[] nums) {
    	int n = nums.length;
    	val = new int[n+2];
    	for (int i=1; i<=n; i++) {
    		val[i] = nums[i-1];
    	}
    	val[0] = val[n+1] = 1;
    	memo = new int[n+2][n+2];
    	for (int i=0; i<n+2; i++) {
    		Arrays.fill(memo[i], -1);
    	}
    	return dfs(0, n+1);
    }
    
    public int dfs(int left, int right) {
    	if (left >= right-1) {
    		return 0;
    	}
    	if (memo[left][right] != -1) {
    		return memo[left][right];
    	}
    	for (int i=left+1; i<right; i++) {
    		int sum = val[left] * val[i] * val[right];
    		sum += dfs(left, i) + dfs(i, right);
    		memo[left][right] = Math.max(memo[left][right] , sum);
    	}
    	return memo[left][right];
    }

DP解法,其实能把上面的dfs+记忆化相同,DP就很好去理解了。以下来自题解。

按照方法一的思路,我们发现我们可以通过变换计算顺序,从「自顶向下」的记忆化搜索变为「自底向上」的动态规划。

令 dp[i][j]dp[i][j]dp[i][j] 表示填满开区间 (i,j)(i,j)(i,j) 能得到的最多硬币数,那么边界条件是 i≥j−1i \geq j-1i≥j−1,此时有 dp[i][j]=0dp[i][j]=0dp[i][j]=0。

可以写出状态转移方程:

最终答案即为 dp[0][n+1]dp[0][n+1]dp[0][n+1]。实现时要注意到动态规划的次序。

class Solution {
public:
    int maxCoins(vector<int>& nums) {
        int n = nums.size();
        vector<vector<int>> rec(n + 2, vector<int>(n + 2));
        vector<int> val(n + 2);
        val[0] = val[n + 1] = 1;
        for (int i = 1; i <= n; i++) {
            val[i] = nums[i - 1];
        }
        for (int i = n - 1; i >= 0; i--) {
            for (int j = i + 2; j <= n + 1; j++) {
                for (int k = i + 1; k < j; k++) {
                    int sum = val[i] * val[k] * val[j];
                    sum += rec[i][k] + rec[k][j];
                    rec[i][j] = max(rec[i][j], sum);
                }
            }
        }
        return rec[0][n + 1];
    }
};


作者:LeetCode-Solution
链接:https://leetcode-cn.com/problems/burst-balloons/solution/chuo-qi-qiu-by-leetcode-solution/
来源:力扣(LeetCode)
著作权归作者所有。商业转载请联系作者获得授权,非商业转载请注明出处。

 

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值