- 博客(28)
- 收藏
- 关注
原创 数字图像处理:彩色图像处理
颜色可以简化目标物的区分,人类对色彩的区分能力比灰度要强大很多。通常区分颜色的特性是亮度、色调、色饱和度。色调是与主波长有关的属性,指观察者接收到的主要颜色,红色的纸,黄色的橙子。色饱和度与所加白光成反比,纯谱色是全饱和的,淡红色(红+白)等都是欠饱和的。色调与饱和度一起称为彩色。1. 彩色模型彩色模型(或彩色空间/彩色系统)的用途是在某些标准下用可接受的方式简化彩色规范。位于系统
2013-04-10 16:38:24 432
原创 数字图像处理:图像复原
图像增强是主观过程,图像复原大部分是一个客观过程。根据退化模型进行相反的处理,恢复出原图像。1. 图像退化/复原的模型空间域退化图像:线性移不变系统g(x) = h(x) * f(x) + n(x),h(x)为退化函数的空间描述,*表示卷积,n(x)为噪声,频域表示 G(u) = H(u)F(u) + N(u)2. 噪声模型频域为常量的为白噪声。空间无关噪声:高斯噪声,瑞利噪声
2013-04-10 16:36:39 1604
原创 数字图像处理:频率域图像增强
离散傅立叶变换(DFT)是数学基础。限波滤波器:H(0,0)=0,其它为1的频域滤波器,滤波后得到均值为0的图像。离散域上的冲击函数的DFT结构是常量1/MN。1. 平滑的频率域滤波器理想低通滤波器ILPF:半径为D0的圆内所有频率无衰减,之外全部衰减。巴特沃斯滤波器BLPF:阶数越高越接近理想低通滤波器,振铃效应越大。一阶没有振铃效应,二阶微小,是有效的低通滤波和可接受的振铃
2013-04-08 15:21:19 868
原创 数字图像处理:空间域图像增强
增强构成图像的像素,g(x,y) = T[f(x,y)],简记s=T(r)1. 一些基本的变换图像反转:s = L - 1 - r,[0, L-1]级灰度对数变换:s = c*log(1 + r),使窄带低灰度图像映射为宽带输出值。比如处理傅立叶频谱。幂次变换:s = r ^ gamma,称为gamma校正,扫描仪打印机显示器等要进行不同gamma值的校正。
2013-04-07 17:09:03 420
翻译 OpenAL编程手册 - (4)
<!--@page {margin:0.79in}p {margin-bottom:0.08in; direction:ltr; color:#000000; widows:0; orphans:0}p.western {font-family:"Liberation Serif","Times New Roman",serif; font-size:1
2013-03-25 18:36:58 954
翻译 OpenAL编程手册 - (3)
<!--@page {margin:0.79in}p {margin-bottom:0.08in; direction:ltr; color:#000000; widows:0; orphans:0}p.western {font-family:"Liberation Serif","Times New Roman",serif; font-size:1
2013-03-25 18:32:42 800
翻译 OpenAL编程手册 - (2)
<!--@page {margin:0.79in}p {margin-bottom:0.08in; direction:ltr; color:#000000; widows:0; orphans:0}p.western {font-family:"Liberation Serif","Times New Roman",serif; font-size:1
2013-03-25 18:29:50 1398 1
翻译 OpenAL编程手册 - (1)
<!--@page {margin:0.79in}pre {direction:ltr; color:#000000; widows:0; orphans:0}pre.cjk {font-family:"WenQuanYi Micro Hei",monospace}pre.ctl {font-family:"Lohit Hindi",monospace}
2013-03-25 18:23:21 3419 3
原创 音效增强 - 预备知识
本文由网络文拼凑而成。 通常将人耳可以听到的频率在20Hz到20KHz的声波称为为音频信号。人的发音器官发出的声音频段在80Hz到3400Hz之间,人说话的信号频率在300到3000Hz,有的人将该频段的信号称为语音信号。根据应用场合的不同可以将数字音频编码分为如下两种编码:语音编码:针对语音信号进行的编码压缩,主要应用于实时语音通信中减少语音信号的数据量。典型的编码标准有I
2013-03-12 13:49:12 727
原创 第十五章. Grossberg网络
15.2.1 生物学的启发——视觉 幻觉,是由视觉修复机制产生的,这种修复机制是为了克服视网膜吸收过程的不完善而产生的。 视神经乳头产生视觉盲点。但是视觉神经所做的处理,使我们通常不能觉察到盲点的存在。 静脉或动脉覆盖的部分,感受不到光刺激。视场中心的视网膜凹斑,其中只有锥体细胞,
2012-10-07 22:41:48 247
原创 第十四章. 竞争网络
介绍一些与Hamming网络(第三章)及其相似的一些网络,使用十三章介绍的联想学习规则对模式分类进行自适应学习。14.2.1 Hamming网络(参见第三章) 横向抑制:每个神经元的输出都对其它神经元的输出产生抑制作用,如第二层递归层中的权值矩阵、 胜者全得竞争:只有一个神经元有非0输出的竞争关系,如第二层递归层14.2.2 竞争层
2012-10-07 10:37:47 428
原创 第十三章. 联想学习
前面介绍的都是有监督的学习,这章介绍无监督的学习。 联想:指系统中输入与输出之间的任何联系。当两个模式相关联时,输入模式称为刺激,输出模式称为响应。13.2.1 简单联想网络:a = hardlim( w0 * p0 + w * p + b ) 无条件刺激:输入p0必然导致a输出。 条件刺激:输入p初始时不能导致a输出,经过训练算法后可
2012-10-06 20:13:39 501 1
原创 第十二章. 反向传播算法的变形
基本的反向传播算法对实际应用来说太慢了,快速算法的研究粗略分成两类:第一类包括那些使用启发式信息的技术,这源于对标准反向传播算法特定性能的研究。这些启发式技术包括可变的学习速度、使用动量和改变比例向量。第二类研究集中在标准数值优化技术,其实训练前向神经网络减小均方误差只是一个数值优化问题,可以从大量已有的数值算法中选择快速训练算法。 SDBP:称基本的反向传播算法为最速下降反
2012-10-05 20:58:01 392
原创 第十一章. 反向传播
反向传播是一个更一般的LMS算法,可以用于训练多层网络。也是最速下降法的近似,性能指数是均方差。多层感知机: 多层网络的应用:1.在模式分类中,它可以完成单层网络无法解决的问题,如异或问题;2. 在函数逼近中,两层网络在其隐层中用S形传输函数,在输出层中用线性函数,就可以以任意精度逼近感兴趣的函数,只要隐层中有足够的神经元。反向传播算法(BP算法): 1
2012-09-23 20:50:48 306
原创 第十章. Widrow-Hoff学习算法
Widrow-Hoff算法是一个近似最速下降法,性能指标是均方差。ADALINE(ADAptive LInear NEuron,自适应线性神经元)网络: a = purelin(W *p+ b) a = W' * p + b => a=x' * z, x=[W; b], z=[p;1]均方差: F(x) = E[e^
2012-09-15 22:54:33 2413
原创 第九章. 性能优化
介绍几种优化算法,都是根据初始值x0迭代,x[k+1] = x[k] + a[k] * p[k],p[k]代表搜索方向,a[k]为学习速度(学习步长,大于0小于1)。最速下降法: x[k+1] = x[k] - a[k] * g[k] 根据一阶近似,沿梯度方向反向时,下降最快,即 p[k] = -g[k], g[k]为F(x)在x[k]点处的梯度方向。 学习
2012-09-15 21:00:13 276
原创 第八章. 性能曲面和最优点
性能学习和联想学习、竞争学习一样,是一类重要的学习规则。目的在于调整网络参数,优化网络性能。 性能指数:衡量网络性能的定量标准。性能指数在网络性能良好时很小,反之很大。 性能优化的过程实质上就是搜索参数空间(权值和偏置)来减小性能指数。 泰勒级数:越高阶近似,得到近似函数的精度范围越大。 神经网络的性能指数是关于所有参数的函数,需要用多变量形式的泰勒级数。其
2012-09-11 21:20:55 361
原创 第七章. 有监督的Hebb学习
线性联想器:a=purelin(Wp), 属于联想存储器的一种 联想存储器:学习Q对标准输入输出向量,{p1,t1}, ..., {pq,tq}. 输入p=px时输出t=tx,输入发生微小波动时输出也应只发生微小波动。 Hebb规则:正的输入产生正的输出,则增加权值,w_new = w_old + alpha*p*t,当t表示对应时刻网络的实际输出时,这是一种无监督学习。而当t
2012-09-05 22:04:23 578
原创 第六章. 神经网络中的线性变换
线性变换:T(x1+x2)=T(x1)+T(x2);T(ax)=aT(x) 基变换:y=Ax, x'=Cx,y'=Bx' -> B=inv(C)*A*C 相似变换:B=inv(C)*A*C 特征向量 特征值:Ax = ax, x称为特征向量, a为对应的特征值
2012-08-26 13:52:12 310
原创 第五章. 信号和权值向量空间
复习《线性代数》内容。 线性向量空间 线性无关: 当且仅当a=0时,aX=0,则称X的各个列向量线性无关。 基向量 内积:(x,y)=(y,x); (x, ay+bz)=a(x,y)+b(x,z); (x,x)>=0, 当前仅当x=0时,(x,x)=0 范数:||x||>=0; ||x||=0 x=0; ||ax||=|a|*||x||; |
2012-08-14 16:50:25 266
原创 第三章. 一个说明性实例
3.2.2 感知机(hardlim, hardlims) W总是和判定边界垂直,判定边界随b值平移。 当W是多个行向量组成的矩阵,每个行向量都有一个判定边界。因为边界是线性的,单层感知机只能识别线性可分的模式。3.2.3 Hamming网络 专门求解二值模式识别问题(输入向量的每个元素只能是两个值中的一个,如[-1, 1])。两层:前馈层->递归层,两层神经元数目相同。
2012-08-10 19:41:15 229
原创 第四章. 感知机学习规则
4.2.1 学习规则 学习规则:修改权值和偏置的方法和过程。大致分为三类:有监督学习,无监督学习,增强(或分级)学习。 1) 有监督的学习。一堆{输入, 期望输出} 序列来训练网络,调整权值和偏置,从而是实际输出与期望输出越来越接近。感知机的学习属于这种。 2) 增强学习。与1)类似,不过并不给出期望输出,而只给一个级别(或评分),这个级别是对网络在某些输入序列上的性
2012-08-10 19:31:23 571
原创 第三章. 一个说明性实例
3.2.2 感知机(hardlim, hardlims):W总是和判定边界垂直,判定边界随b值平移。 当W是多个行向量组成的矩阵,每个行向量都有一个判定边界。因为边界是线性的,单层感知机 只能识别线性可分的模式。3.2.3 Hamming网络:专门求解二值模式识别问题(输入向量的每个元素只能是两个值中的一个,如[-1, 1])。两层:前馈层->递归层,两层神经元数目相同。
2012-08-10 12:55:12 83
原创 第二章: 神经元模型和网络结构
2.2 原理与实例神经元模型: 单输入 a = f(wp+b), f为传输函数, w为权值, b为偏置, a为输出.常用的三种传输函数: * 硬极限: hardlim(n) = {1, n>=0; 0, n 对称硬极限: hardlims(n) = {1, n>=0; -1, n * 线性: purelin(n) = {a=n} 饱和线性: satl
2012-08-08 17:10:08 314
4. Android2.3 将ffmpeg改成Module模式,insmod进内核
特殊需求啊特殊需求。细节的地方改了很多,忘了的部分编译过程中自行解决也是so easy的。
2012-06-29 10:05:13 110
原创 3. Android2.3为MediaScanner增加其它格式的支持
再不写下来就忘了。 Android启动后会自动调用MediaScanner来检索vfat分区中媒体文件,如果找到一个格式支持的文件,并且数据库中没有记录,它就会试着解码一下,如果成功就会加入到数据库中,接下来点击进入Gallery才有可能看到这个文件, 如果解码不成功就不会加入数据库中,在Gallery里不会看到。 改一下frameworks/base/media/java/a
2012-06-29 09:59:57 937
原创 2. Android2.3为FFMPEG编写Extractor
Android能解析的文件格式太少,自己写一个Extractor来实现其它格式( .avi .mov .rmvb .rm .flv ...)的解析。 大体说一下ffmpeg内部的数据解析。ffmpeg内部对外部数据(文件,网络流等)的操作是通过选择合适的protocol来操作的,例如数据对象是文件,它会选择ff_file_protocol来操作。所有的protocol都是在av_regi
2012-06-13 17:27:42 2646 8
原创 1. Android 2.3用ffmpeg替代stagefright自带的swdecoders
FFMPEG源文件放在$TOP/external/ffmpeg中, 编译成几个静态库libavcodec/libavformat/libavutil/...,以后再改成动态库。照网上的,写几个Android.mk和一个av.mk,可以 搞定。写了一个脚本调用configure, 在脚本中做一些配置,把需要的parser, decoder, encoder, demuxer等放进去,其它的disab
2012-06-04 19:31:01 2126 2
空空如也
空空如也
TA创建的收藏夹 TA关注的收藏夹
TA关注的人