n个骰子的点数

题目:把n个骰子扔在地上,所有骰子朝上一面的点数之和为S。输入n,打印出S的所有可能的值出现的概率。

分析:玩过麻将的都知道,骰子一共6个面,每个面上都有一个点数,对应的数字是1到 6之间的一个数字。所以,n个骰子的点数和的最小值为n,最大值为6n。因此,一个直观的思路就是定义一个长度为6n-n的数组,和为S的点数出现的次数保存到数组第S-n个元素里。另外,我们还知道n个骰子的所有点数的排列数6^n。一旦我们统计出每一点数出现的次数之后,因此只要把每一点数出现的次数除以n^6,就得到了对应的概率。

该思路的关键就是统计每一点数出现的次数。要求出n个骰子的点数和,我们可以先把n个骰子分为两堆:第一堆只有一个,另一个有n-1个。单独的那一个有可能出现从1到6的点数。我们需要计算从1到6的每一种点数和剩下的n-1个骰子来计算点数和。接下来把剩下的n-1个骰子还是分成两堆,第一堆只有一个,第二堆有n-2个。我们把上一轮那个单独骰子的点数和这一轮单独骰子的点数相加,再和剩下的n-2个骰子来计算点数和。分析到这里,我们不难发现,这是一种递归的思路。递归结束的条件就是最后只剩下一个骰子了。

基于这种思路,我们可以写出如下代码:


int g_maxValue = 6;
  
 void PrintSumProbabilityOfDices_1(int number)
 {
     if(number < 1)
         return;
  
     int maxSum = number * g_maxValue;
     int* pProbabilities = new int[maxSum - number + 1];
     for(int i = number; i <= maxSum; ++i)
         pProbabilities[i - number] = 0;
  
     SumProbabilityOfDices(number, pProbabilities);
  
     int total = pow((float)g_maxValue, number);
     for(int i = number; i <= maxSum; ++i)
     {
         float ratio = (float)pProbabilities[i - number] / total;
         printf("%d: %f\n", i, ratio);
     }
  
     delete[] pProbabilities;
 }
  
 void SumProbabilityOfDices(int number, int* pProbabilities)
 {
     for(int i = 1; i <= g_maxValue; ++i)
         SumProbabilityOfDices(number, number, i, 0, pProbabilities);
 }
  
 void SumProbabilityOfDices(int original, int current, int value, int tempSum, int* pProbabilities)
 {
     if(current == 1)
     {
         int sum = value + tempSum;
         pProbabilities[sum - original]++;
     }
     else
     {
         for(int i = 1; i <= g_maxValue; ++i)
         {
             int sum = value + tempSum;
             SumProbabilityOfDices(original, current - 1, i, sum, pProbabilities);
         }
     }
 }

上述算法当number比较小的时候表现很优异。但由于该算法基于递归,它有很多计算是重复的,从而导致当number变大时性能让人不能接受。关于递归算法的性能讨论,详见本博客系列的第16

我们可以考虑换一种思路来解决这个问题。我们可以考虑用两个数组来存储骰子点数每一总数出现的次数。在一次循环中,第一个数组中的第n个数字表示骰子和为n出现的次数。那么在下一循环中,我们加上一个新的骰子。那么此时和为n的骰子出现的次数,应该等于上一次循环中骰子点数和为n-1n-2n-3n-4n-5n-6的总和。所以我们把另一个数组的第n个数字设为前一个数组对应的第n-1n-2n-3n-4n-5n-6之和。基于这个思路,我们可以写出如下代码:

void PrintSumProbabilityOfDices_2(int number)
 {
     double* pProbabilities[2];
     pProbabilities[0] = new double[g_maxValue * number + 1];
     pProbabilities[1] = new double[g_maxValue * number + 1];
     for(int i = 0; i < g_maxValue * number + 1; ++i)
     {
         pProbabilities[0][i] = 0;
         pProbabilities[1][i] = 0;
     }
  
     int flag = 0;
     for (int i = 1; i <= g_maxValue; ++i)
         pProbabilities[flag][i] = 1;
       
     for (int k = 2; k <= number; ++k)
     {
         for (int i = k; i <= g_maxValue * k; ++i)
         {
             pProbabilities[1 - flag][i] = 0;
             for(int j = 1; j <= i-k+1 && j <= g_maxValue; ++j)
                 pProbabilities[1 - flag][i] += pProbabilities[flag][i - j];
         }
  
         flag = 1 - flag;
     }
  
     double total = pow((double)g_maxValue, number);
     for(int i = number; i <= g_maxValue * number; ++i)
     {
         double ratio = pProbabilities[flag][i] / total;
         printf("%d: %f\n", i, ratio);
     }
  
     delete[] pProbabilities[0];
     delete[] pProbabilities[1];
 }

值得提出来的是,上述代码没有在函数里把一个骰子的最大点数硬编码(hard code)6,而是用一个变量g_maxValue来表示。这样做的好处时,如果某个厂家生产了最大点数为4或者8的骰子,我们只需要在代码中修改一个地方,扩展起来很方便。如果在面试的时候我们能对面试官提起对程序扩展性的考虑,一定能给面试官留下一个很好的印象。

以上摘自何海涛博客

 

注意上面方法二中21行红色的条件判断,此处原文写的是

for(int j = 1; j <= i && j <= g_maxValue; ++j)

这样的话,需要每次将前k-1元素置为0。原文评论有人指出这个问题,博主也回复说已经修改了,但是文中的代码并没有修改。

 

************************************************************************************

Abstract

求n个骰子得到点数和的概率分布的各种方法。

 

Body

起源是这个:

****************

发信人: dominic123 (dominic), 信区: ACM_ICPC 
标 题: 【算法求助】n个骰子得到点数和的概率分布~ 
发信站: 北邮人论坛 (Thu Dec 2 22:23:23 2010), 站内 

掷n个骰子得到点数和的概率分布? 

例:掷2个骰子的时候,得到的点数和为2,3,4,5,6,7,8,9,10,11,12;得到它们的概率分别是1/36,2/36,3/36,4/36,5/36,6/36,5/36,4/36,3/36,2/36,1/36。 

问题是:当投掷n个骰子的时候得到点数和的概率分布是怎样的?请附推论过程。[ema23]

================

然后我做了个小总结:

****************

发信人: jffifa (绮想), 信区: ACM_ICPC 
标 题: Re: 【算法求助】n个骰子得到点数和的概率分布~ 
发信站: 北邮人论坛 (Fri Dec 3 22:46:37 2010), 站内 

总结一下:


[记号]

记C(i,j)为i个元素中取j个做组合的组合数。 

骰子取值1,2,3,4,5,6,记Ft(n,m)为n个这样的骰子生成和为m的方案数。 
骰子取值0,1,2,3,4,5,记F(n,m)为n个这样的骰子生成和为m的方案数。 
容易有F(n,m)=Ft(n,m+n)。对于Ft(n,m),求解F(n,m-n)即可。 
则F(n,m)等价为(组合模型为): 
a. n个离散RNG(Random Number Generator),每个离散RNG生成范围为[0,6)的整数,生成和为m的生成方案个数。 
b. m个无区别球放进n个有区别盒子,每个盒子球数在[0,6)间方案数。 
c. 线性方程x[1]+x[2]+...+x[n]=m,x[i]∈[0,6)的整数解个数。


[解法]

1.生成函数法: 
F(n,m)= 
(1+x+x^2+...+x^5)^n中x^(m-n)的系数。 

2.dp/离散域卷积法: 
F(n,m)=sigma(k from 0 to 5) F(n-1,m-k),边界值F(0,0)=1。 
即u(i)=1 (i为整数且i∈[0,6)),n个u相卷。 

3.组合数学法: 
记G(p,q)为q个无区别球放进p个有区别盒子,无球数限制([0,+inf))的方案数。容易有G(p,q)=C(p+q-1,q)。为表示方便令G(p,q)=0 (q<0)。 
考虑G(n,m)与F(n,m)第二个组合模型的联系。如果有一个盒子球数超过6,从该盒子中拿出6个球,则等价方案数为G(n,m-6),有两个盒子超过6,则等价方案数为G(n,m-12),……。 
根据容斥原理,有: 
F(n,m)=C(n,0)*G(n,m)-C(n,1)*G(n,m-6)+C(n,2)*G(n,m-12)-... 
F(n,m)=sigma(i from 0 to [m/6]) (-1)^i * C(n,i) * G(n,m-i*6)([]为下取整,由于m<0时G(n,m)=0所以只要加到[m/6]即可) 

4.Ehrhart多项式法: 
考 虑F(n,m)的第三个组合模型,该方程表示一个n维线性空间中的n-1维HyperPlane。其整数解对应HyperPlane上所有整点。而加上 限制HyperRectangle:([0,6))^n后,整数解对应就是HyperPlane截HyperRectangle所得截面上所有整点。 
易知F(n,m)所对应的HyperPlane与F(n,m+1)所对应的HyperPlane间没有整点,且F(n,m)截HyperRectangle与F(n,m+1)截HyperRectangle的体积易求(见watashi大牛文章 http://watashi.ws/blog/1538/rng-hyperplane-hyperrectangle/ )。则两截面间体积为上述两个体积差。 
同时,由Ehrhart多项式可以写出两截面间体积与整点数的关系。则可通过二者关系求出答案。 
但是,具体过程我不会…… 

方法2对此题比较实用。借助FFT或数论转换可以降低算法复杂度。


[推广]

如果是n个骰子的平方和为m呢?立方和呢? 
此时方法4还有一定价值(但Ehrhart多项式不能用),HyperPlane变为曲面了。 
如果是连续变量还好做,但是离散的就真的很难。 
-- 
沒有白天也沒有黑夜。走不出上鎖的時間。今天或明天 瞬間無法永遠。剩下只能哭泣的眼。分不清是你還是偽裝的我。看不見窗外的天氣。就算到最後 沒有誰能逃離。我會等待著你。 
<少女密室> 冬。

================

连续变量的做法见http://biribiri.blogbus.com/logs/85754889.html

来自watashi大牛的那篇文章及2009国家集训队论文《信息学竞赛中概率问题求解初探 - 梅诗珂》。

 

Reference

http://biribiri.blogbus.com/logs/85754889.html

2009国家集训队论文《信息学竞赛中概率问题求解初探 - 梅诗珂》

 

转自http://www.cnblogs.com/jffifa/archive/2011/12/17/2291072.html



  • 0
    点赞
  • 1
    收藏
    觉得还不错? 一键收藏
  • 0
    评论

“相关推荐”对你有帮助么?

  • 非常没帮助
  • 没帮助
  • 一般
  • 有帮助
  • 非常有帮助
提交
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值