- 博客(98)
- 收藏
- 关注
原创 Pytorch中一些重要的经典操作和简单讲解
本文介绍了PyTorch中常用的张量操作,包括:1)形状变换(reshape/view用于调整维度,transpose/permute用于维度交换);2)张量拼接与分割(cat/stack用于合并,chunk/split用于拆分);3)索引选择(gather/scatter按索引操作,masked_select/where条件选择);4)数学运算(clamp限制范围,norm计算范数);5)统计运算(mean/sum/std计算统计量);6)广播重复(expand/repeat扩展张量);7)类型转换(to
2025-05-28 09:45:24
613
原创 PyTorch维度操控:squeeze与unsqueeze详解
PyTorch中的squeeze()和unsqueeze()函数用于调整张量维度:squeeze()移除大小为1的维度,而unsqueeze()在指定位置添加大小为1的维度。这些操作常用于批处理数据准备、广播运算和神经网络输出处理等场景,如为单个图像添加批次维度(unsqueeze(0))或移除多余的输出维度(squeeze())。这两个函数是处理张量维度匹配问题的基本工具,在深度学习数据处理中具有重要作用。
2025-05-28 09:42:41
340
原创 从暴力递归到动态规划:0/1背包问题全解析
0/1背包问题是一个经典的优化问题,目标是在给定背包容量和一组物品(每个物品有重量和价值)的情况下,选择物品放入背包,使得总价值最大,且总重量不超过背包容量。本文详细介绍了从暴力递归到动态规划的解法。 暴力递归:通过递归遍历所有可能的物品选择组合,时间复杂度为O(2^n),空间复杂度为O(n),适用于小规模问题。 动态规划(二维数组):使用二维数组记录中间结果,避免重复计算,时间复杂度为O(nW),空间复杂度为O(nW),适用于中等规模问题。 动态规划(一维数组):优化空间复杂度,使用一维数组,时间复杂度仍
2025-05-19 10:41:29
888
原创 LangChain多模态智能体:文生图、识图、RAG问答与小说生成全攻略
本项目基于LangChain框架,构建了一个多模态智能体,整合了文生图、识图、RAG问答与小说生成等功能,旨在打造一个全能型智能助手。通过多模态大模型Qwen2.5-VL和Qwen3-235B-A22B,智能体能够处理图文结合的复杂查询,并实现知识驱动的精准回答与自动化内容生成。技术架构包括多模态大模型、文生图工具、识图工具、RAG问答、实时搜索工具和小说生成工作流,采用ReAct模式进行工具调用决策。核心功能涵盖图文理解与生成、知识问答、多章节小说生成等,展示了智能体在跨模态任务中的强大能力。未来计划包括
2025-05-19 10:36:37
721
原创 Python二进制运算:高效操作与实用技巧
Python中的二进制运算通过位运算符直接操作整数的二进制位,适用于底层系统编程、数据加密和图像处理等领域。主要位运算符包括按位与(&)、按位或(|)、按位异或(^)、按位取反(~)、左移(<<)和右移(>>)。这些运算符用于提取、设置、翻转二进制位,判断奇偶性,交换变量值等操作。此外,Python还提供了内置函数如bin(x)、int(x, base)和format(x, 'b')来辅助二进制处理。位运算通常比普通算术运算更快,适合处理大量数据,能显著提高性能。掌握这些技巧
2025-05-17 11:41:43
502
原创 构建你的第一个多模态AI智能体:结合 Langchain、ModelScope 实现文生图与识图
本文介绍了如何利用Langchain框架和ModelScope平台构建一个多模态AI智能体,该智能体能够根据文本描述生成图片(文生图)并理解图片内容(识图)。文章详细阐述了项目的目标、环境准备、核心组件的拆解与实现,包括初始化多模态大模型、图像处理工具集、远程图片下载与保存模块、文生图与识图工具的定义、Agent的决策型LLM选择以及最终的组装与测试。通过逐步解析和代码示例,读者可以学习到如何将复杂的AI应用模块化,并通过Langchain的Agent机制实现智能决策与工具调用。文章还展望了未来可能的扩展方
2025-05-17 00:39:00
886
原创 CNN-LSTM并行网络精准预测火电厂风机故障以及后续优化
本方案提出了一种基于CNN-LSTM并行网络的深度学习模型,用于火电厂风机(如引风机、送风机、鼓风机等)的故障分类预测。该模型结合了多个传感器(振动、温度、压力、叶片角度、油液分析等)的时序数据,通过数据清洗、归一化等预处理步骤,利用CNN分支提取多变量空间特征,LSTM分支捕捉时序依赖,最终在融合层进行特征拼接并通过全连接分类器输出故障类别。该模型已在风机和其他旋转机械故障诊断中验证了优异效果,准确率常超90%,最高可达99.6%。方案还提供了代码示例和优化建议,如引入残差卷积块、多尺度卷积、注意力机制等
2025-05-16 10:17:16
731
原创 揭秘Qwen大语言模型:从零到问答大师
大语言模型(LLM)如Qwen(通义千问)的诞生经历了复杂的过程,主要包括预训练和指令微调两个关键阶段。预训练阶段,模型通过海量数据学习语言的通用规律和世界知识,成为一个“通才”。数据来源广泛,包括互联网文本、书籍、代码等,经过清洗、分词等处理后,模型通过Transformer架构进行大规模训练,学习预测下一个词元。指令微调阶段,模型在预训练基础上,通过问答对数据进行微调,使其能够理解并回答用户问题。微调过程中,模型只计算答案部分的损失,强制其专注于生成符合指令的答案。最终,经过对齐和评估,模型具备了强大的
2025-05-16 09:42:07
926
原创 深度解析:如何高效获取优质微调训练数据集
通过本文的实战方法与行业案例,开发者可快速构建高效的数据获取 pipeline,为模型微调奠定坚实基础,结合前沿技术与行业实践,系统讲解从数据获取到质量优化的全流程,附多个领域实战案例及可复用代码,助你打造高效的数据工程。
2025-05-14 10:45:37
1046
原创 LightGBM、XGBoost 与深度学习模型到底该选谁?一文讲透!
在选择机器学习模型时,LightGBM、XGBoost和深度学习各有其适用场景。LightGBM和XGBoost都是基于梯度提升树的集成学习算法,适用于结构化数据,具有训练速度快、可解释性强的特点,尤其在小样本场景下表现优异。LightGBM在训练速度和内存使用上优于XGBoost,适合大规模数据。深度学习模型则擅长处理非结构化数据(如图像、文本、声音),支持多模态融合,但训练速度较慢且可解释性差。总结来说,结构化数据预测任务推荐使用LightGBM,而复杂数据处理任务则非深度学习莫属。
2025-05-13 09:05:36
946
原创 机器学习实战:归一化与标准化的选择指南
在机器学习中,是否需要对数据进行归一化或标准化处理,取决于所使用的模型类型。对于基于决策树的模型如LightGBM和XGBoost,由于它们对特征的数值分布不敏感,因此不需要进行归一化或标准化。然而,对于神经网络、KNN、SVM和线性模型等,归一化或标准化是必要的,以确保模型的稳定性和收敛速度。归一化将数据压缩到[0,1]范围,适用于图像像素和深度学习输入;而标准化将数据转换为均值为0、标准差为1的分布,适用于KNN、SVM、回归和神经网络。在实际应用中,通常只需选择其中一种方法,具体选择取决于模型和数据分
2025-05-12 23:11:50
925
原创 深度学习与机器学习模型全景解析:适用场景与最优实践指南
在人工智能技术高速发展的今天,机器学习和深度学习模型已成为各行业数字化转型的核心引擎。本文将深入剖析主流模型的技术特性与适用场景,并配以典型应用案例,助您精准把握不同场景下的最优解决方案。
2025-05-12 10:40:49
993
原创 趣谈Ai各种模型算法及应用
大家好!今天,我们来聊一个让很多初学者甚至有经验的开发者都头疼的问题:面对琳琅满目的机器学习和深度学习模型,到底该如何选择?就像走进一家拥有无数工具的五金店,如果你不知道每件工具的用途,很容易就挑花了眼。
2025-05-12 10:36:20
1405
原创 火电厂风机故障检测:算法全解析与应用实例
在火电厂风机等大型设备故障分类检测任务中,常见的模型算法包括数据降维与聚类方法、经典神经网络与训练机制、集成学习与梯度提升、对抗与自监督模型、深度时序与混合网络、优化算法与融合策略以及可视化与仿真技术。这些算法通过处理传感器信号(如振动、温度、电流等)进行特征降维、特征提取、分类决策或状态评估。核心流程涉及数据预处理、多模型融合与优化,以及结果的实时部署与反馈更新。例如,主成分分析(PCA)用于去除冗余信号特征,模糊C均值聚类(FCM)用于动态监测设备状态,反向传播神经网络(BP神经网络)用于早期故障模式识
2025-05-12 10:20:23
560
原创 Python百库指南:数据科学到Web开发全解析
Python作为一种功能强大的编程语言,拥有丰富的第三方库,适用于多种开发场景。本文将这些库分为几大类别,并简要介绍了它们的功能和主要应用场景: 数据科学与机器学习:包括NumPy、Pandas、SciPy、Matplotlib、Scikit-learn、TensorFlow等,用于数据处理、分析和机器学习模型的开发与部署。 Web开发:如Django、Flask、FastAPI等框架,适用于构建从简单到复杂的Web应用和API。 图形用户界面(GUI)开发:Tkinter、PyQt、Kivy等库,用于创建
2025-05-10 10:49:00
359
原创 多模型协同预测在风机故障预测的应用(demo)
本文介绍了一种多模态协同模型,用于处理不同特征对目标变量的影响。通过传入不同的输入字段,模型能够预测输出结果。代码中使用了多种数据处理和机器学习技术,包括标准化、LSTM、CNN等。DataProcessor类负责数据的预处理和特征提取,特别是振动信号的处理,包括计算RMS、峰值、峰度、偏度等特征。模型还支持保存和加载已拟合的标准化器,以便在训练和预测阶段使用。该模型适用于多故障分类任务,能够处理多种传感器数据,如振动、温度、压力等,并支持10种故障类型的分类。
2025-05-10 00:12:58
510
原创 PyTorch基础模块与预训练模型全解析
PyTorch的核心库torch.nn提供了构建神经网络的基础模块,如线性层、卷积层、池化层、激活函数等,这些模块是通用的,适用于各种深度学习任务。领域库如torchvision、torchaudio和torchtext则基于这些模块提供了预训练好的模型,适用于特定领域如图像分类、语音识别和文本处理。torch.nn中的模块是构建任何神经网络的基础,而预训练模型则可以直接用于推理或微调。例如,torchvision.models中提供了超过60种模型架构,包括AlexNet、VGG、ResNet等。这些预训
2025-05-09 12:06:32
1183
原创 全层微调:解锁预训练模型的无限潜力
在进行预训练模型的微调(Fine-tuning)时,确保所有层的参数均可训练是关键。首先,加载预训练模型(如ResNet18)并替换最后一层以适应新任务(如CIFAR-10分类)。默认情况下,所有参数的requires_grad属性为True,但为确保无误,可以显式地将其设置为True。接着,定义优化器时,需将model.parameters()传递给优化器,以确保所有参数参与训练。微调时,学习率通常设置得较小(如1e-4),以避免破坏预训练的特征。最后,通过标准的训练循环进行模型微调,并在训练完成后评估模
2025-05-09 11:15:50
778
原创 Transformer剩余寿命预测代码流程
剩余寿命(RUL)预测系统的 Python 代码,并在关键处加入详细注释,方便直接拿来使用或二次开发。
2025-05-08 11:23:53
272
原创 ResNet中使用expansion放大维度特征
此外,在 Bottleneck 设计里把输出通道数“放大”四倍,看似多余,实际上是一个精心权衡了。,它只有两层 3×3 卷积,输入和输出通道数是相同的,所以我们设定。用来表示“该残差块输出通道数相对于它内部基准通道数(的卷积核会进行一个降维,压缩在升维的操作,使用。的kenel卷积核始终保持3*3,而。在 ResNet 的实现里,定义提升的倍率可以放大特征。,152-layer属于。
2025-05-08 11:15:36
545
原创 ResNet残差神经网络的模型结构定义(pytorch实现)
Kaiming He 等人,Deep Residual Learning for Image Recognition (CVPR 2016).(同 ResNet‑34),但每个 block 内部由三个卷积层组成,expansion 值为 4。PyTorch 实现 ResNet‑50。它与 ResNet‑34 唯一不同之处在于使用了。这样就完整复现了图中右侧那张“34-layer residual”结构。这样就完成了 ResNet‑50 的全结构定义。并将其与预训练权重或自己的数据集一起使用。
2025-05-08 11:08:22
946
原创 Transformer-LSTM混合模型在时序回归中的完整流程研究
本研究详细梳理了Transformer-LSTM混合模型在时序回归任务中的从数据准备到部署的全流程。此类混合模型充分结合了LSTM的记忆能力和Transformer的全局建模能力,已在多个领域展现出优越性能。优势:混合结构能同时捕捉局部和全局时序特征,提高了复杂数据上的预测精度;Transformer的并行化计算也加快了训练速度。改进方向:可尝试更深的网络(多层LSTM/Transformer)、不同的融合方式(如并行分支)、更丰富的输入特征(如外部时间标签、统计量),或结合卷积层处理局部模式等。
2025-05-06 20:40:14
1720
原创 Transformer 与 LSTM 在时序回归中的实践与优化
通过结合 Transformer 和 LSTM 的混合模型,可以实现更好地捕捉时序数据中的长期依赖关系和复杂模式。本章所讲述流程展示了从数据生成、模型设计到训练和评估的完整过程,并引入了早停机制和超参数调优,以提高模型的性能和稳定性。
2025-05-06 13:29:45
421
原创 transformer➕lstm训练回归模型
我们定义了一个包含 Transformer 和 LSTM 的混合模型。Transformer 模块采用了多头自注意力机制(MultiHeadAttention),并与 LSTM 网络共同处理时序数据。# Transformer 模块# LSTM 模块# 全连接层# 输出层# 学习率调度# Transformer 模块x = layers.Add()([x, inputs]) # 残差连接# LSTM 模块# 聚合时间步的输出# 全连接层# 输出。
2025-05-06 13:18:30
534
原创 纳米材料制备工艺
它们可以是零维的纳米颗粒(如金纳米粒),一维的纳米线(如碳纳米管),二维的薄膜(如石墨烯),甚至三维的复杂结构(如纳米多孔材料)。纳米材料,这类尺寸在1-100纳米范围内的神奇物质,因其独特的光学、电子、机械和化学性质,成为现代科技的宠儿。今天,我们将深入探讨纳米材料的制备方法,从经典的自上而下到前沿的自下而上,带你走进纳米世界的制造工厂!从机械研磨的粗犷到生物合成的精妙,纳米材料的制备方法展示了科技的多样性与创造力。:通过溶液中的化学反应(如水解和缩合)形成胶体颗粒,再转化为纳米材料。
2025-03-02 18:33:42
1326
原创 纳米材料简介
例如,癌症治疗中常用的纳米药物载体可以显著延长药物在体内的循环时间。未来,随着制备技术的进步(如绿色合成和智能化控制)和对纳米材料性质的深入理解,其在科技和工业中的应用将更加广泛,可能推动医疗诊断、清洁能源和智能材料等领域的重大突破。在纳米尺度下,电子的行为受到量子力学的支配,导致光学、电学和磁学性质的改变。加入纳米填料(如碳纳米管或纳米粘土)可以显著提升复合材料的强度、韧性和耐热性,用于航空航天和汽车工业。纳米涂层(如二氧化钛或硅烷涂层)具有疏水和疏油特性,实现表面的自清洁功能,应用于建筑玻璃或纺织品。
2025-03-02 18:30:47
1359
原创 一个使用ALIGNN神经网络对材料性能预测的深度学习案例解读
在这个案例中,我们将使用一种更先进且性能更优的图神经网络模型——ALIGNN(Atomistic Line Graph Neural Network),结合Materials Project API(MP API)的数据,预测材料的带隙(band gap)。ALIGNN是一种专门为材料科学设计的GNN模型,它通过结合原子图和键角信息,能够更精确地捕捉原子间的相互作用和几何特性。ALIGNN通过原子图和线图的联合建模,捕捉了更丰富的几何信息,相比SchNet具有更高的预测精度。若键类型复杂,可增至256。
2025-03-02 03:40:14
935
原创 PyG结合MP api 实现深度学习对材料性能预测的简单案例分析
选择预测材料的带隙(band gap) 作为任务,带隙是材料的一个关键性能,影响其导电性和光学性质。在材料科学中,晶体结构可以表示为图(原子为节点,化学键为边),PyG 是实现性能预测的理想工具。Material Project API (MP API): Materials Project 是一个开放的材料数据库,提供了丰富的晶体结构和性能数据。晶体结构可以表示为图,原子作为节点,化学键作为边。任务: 使用 MP API 获取材料数据,结合 PyG 构建 GNN 模型,预测材料的带隙。
2025-03-02 03:32:03
925
原创 Springboot的简单推荐实现
该系统允许用户注册后选择兴趣,并通过推荐算法找到匹配的社团。通过 Spring Boot 的强大功能,实现了用户管理、兴趣匹配和推荐服务。核心设计目标是实现一个高效、易扩展的推荐系统,满足社团招新的需求。用户注册时选择兴趣,系统通过匹配用户兴趣和社团标签,推荐最相关的社团。系统使用 JPA 管理数据库,Spring Security 确保安全,推荐前5个匹配度最高的社团。使用 Spring Boot 构建社团招新推荐系统,用户注册后选择兴趣,系统根据兴趣推荐社团。:用户注册并选择兴趣,系统存储用户信息。
2025-02-22 17:14:20
622
原创 Spring Boot 集成 T-io 实现客户端服务器通信
私聊:用户可直接将消息发送给指定的其他用户群聊/组聊:用户可以进入聊天室或群组,实现多端实时互动。备注:群聊和组聊本质上都是基于“组”进行消息广播,区别可以在业务逻辑上进一步细分,比如使用不同的分组名称管理不同聊天场景。T-io 是一个轻量级、高性能、扩展性强的网络通信框架,通过其内置的编码、解码、心跳检测、分组管理等功能,可快速构建高并发的通信服务。T-io 要求开发者定义自己的数据包以封装传输的业务数据。
2025-02-22 10:54:53
1277
原创 Tio-Boot 集成 Spring Boot 实现即时通讯功能全解析
Tio-Boot 是基于 Tio 框架的 Spring Boot Starter 扩展,提供高性能、低延迟的网络通信能力,支持 TCP/UDP 协议及 WebSocket 协议,适用于即时通讯、物联网等场景。
2025-02-22 10:42:58
681
原创 Uniapp的简要开发流程指南
Uniapp 是由DCloud推出的一款基于Vue.js的多端开发框架,支持编译到iOS、Android、H5、以及各大小程序平台(如微信小程序、支付宝小程序、百度小程序等)。它使开发者可以通过一次编码,实现跨平台的应用发布,提高了开发效率。
2024-07-05 09:40:01
689
原创 简单的手动实现spring中的自动装配案例
通过使用registerBean静态方法,扫描传入的包名,检查其是否有@MyRegister注解,并将所有有此注解的类实例化后装入beans中,以备后续的装配。使用injectBeans静态方法,可以扫描指定包下的所有带MyInject注解的字段,如果在beans的Map中存在这个字段的实例化类,则执行装配。@MyInject作用于字段,可以实现从容器中找到特定类型的实例化对象后执行装配。简简单单的实现一个spring中的自动装配和容器管理的小骚操作。配置两个自定义注解,用于标识是否执行装配。
2024-07-05 09:28:51
513
原创 javaFX为例的MVC案例
应用程序启动时,它会创建一个场景,其中包含视图,并将控制器和模型关联起来。负责将模型和视图绑定在一起,并处理任何用户输入或模型更新。是一个简单的 GUI 视图,用于显示这些数据,而。封装了姓名和年龄数据,
2024-06-08 00:06:57
836
原创 peft+llama3训练自定义数据
在这个格式中,每个 JSON 对象包含一个 “input” 字段和一个 “label” 字段。输入字段包含你的模型需要预测的文本,而标签字段包含相应的目标输出。如果你的任务是语言建模,那么 “label” 字段通常是 “input” 字段的延续。要微调自己的模型训练 LLaMA 3,则需要准备一个 JSON 格式的数据集,其中每个条目包含输入文本和相应的标签(如果有的话)。在这个代码案例中,我们首先加载了 LLaMA 3 模型和分词器,并设置了 PEFT 的 LoraConfig。函数对其进行预处理。
2024-05-15 16:49:51
1926
1
原创 自定义数据集图像分类实现
要使用自己的图片分类数据集进行训练,这意味着数据集应该包含一个目录,其中每个子目录代表一个类别,子目录中包含该类别的所有图片。方法从目录中读取图片数据,并生成批量数据供模型训练使用。然后,我们创建了一个简单的CNN模型,并使用训练和验证数据进行了训练。是训练数据所在的目录,这样类别顺序才是正确的。如果训练数据和测试数据不在同一个目录下,你需要确保测试数据的类别顺序与训练数据相同。然后,我们将这个映射反转,以便可以从索引得到类别名称。在这个例子中,我们首先定义了训练和验证数据的路径,然后创建了。
2024-05-12 22:51:46
688
原创 Transformer模型一些参数的理解
在Transformer模型中,embedding层、token、padding和attention mask是关键的概念。下面我会逐一解释这些概念,并提供实际的代码示例。
2024-05-05 23:16:40
1442
原创 Transformer和TensorFlow的区别
Transformer和TensorFlow是两个不同层面的概念,Transformer是一种深度学习模型架构,而TensorFlow是一个开源的机器学习框架,可以用来实现包括Transformer在内的各种深度学习模型。
2024-05-05 23:02:10
5755
WebFlux的项目基本案例
2024-01-12
空空如也
TA创建的收藏夹 TA关注的收藏夹
TA关注的人