质数判断,对于这个,很多人可能会直接这样写:
public static boolean isPrime(int n) {
for (int i = 2; i < n; i++) {
if (n % i == 0)
return false;
}
return true;
}
这是最简单的。50000以内输出所有的质数用了469毫秒。
又或者有的人知道平方根的优化:
public static boolean isPrime(int n) {
int i, s = (int) (Math.sqrt((double) n) + 0.01);
for (i = 2; i <= s; i++)
if (n % i == 0)
return false;
return true;
}
50000以内输出所有的质数用了18毫秒。
再或者消除偶数:
public static boolean isPrime(int n) {
int i, s = (int) (Math.sqrt((double) n) + 0.01);
if (n <= 3)
return true;
if (n % 2 == 0)
return false;
for (i = 3; i <= s; i += 2)
if (n % i == 0)
return false;
return true;
}
50000以内输出所有的质数用了7毫秒。
这样还不是很够的话,我们可以考虑这个事实:所有大于4的质数,被6除的余数只能是1或者5,比如接下来的5、7、11、13、17、19都满足。所以,我们可以特殊化先判断2和3,但后面的问题就出现了,因为并非简单的递增,从5开始是+2、+4、+2、+4....这样递增的。这样的话,循环应该怎么写呢?
首先,我们定义一个步长变量step,循环大概是这样 for (i = 5; i <= s; i +=step)那么,就是每次循环,让step从2变4,或者从4变2。于是,可以这么写:
public static boolean isPrime(int n) {
int i, s = (int) (Math.sqrt((double) n) + 0.01), step = 4;
if (n <= 3)
return true;
if (n % 2 == 0)
return false;
if (n % 3 == 0)
return false;
for (i = 5; i <= s; i += step) {
if (n % i == 0)
return false;
step ^= 6;
}
return true;
}
50000以内输出所有的质数用了5毫秒。
如上代码,一个step^=6;完成step在2和4之间转换(这个^符号是C里的异或运算)。理由是,2化二进制是010,4是100,6是110,于是2异或4得到6:
2 ^ 4 => 6
6 ^ 2 => 4
6 ^ 4 => 2
于是利用异或,就可以构造这种步长在两个值之间来回变化的循环。思考:前面说的是双值循环,那么如何构造三值或者四值循环?