输出TensorFlow保存的checkpoint内变量的几种方法

1. tensorflow官方save and restore部分。

其中 inspect_checkpoint library,可以用来检查checkpoint中的变量。(https://www.tensorflow.org/guide/saved_model?hl=zh-cn)。

# import the inspect_checkpoint library
from tensorflow.python.tools import inspect_checkpoint as chkp

# print all tensors in checkpoint file
chkp.print_tensors_in_checkpoint_file("/tmp/model.ckpt", tensor_name='', all_tensors=True)

# tensor_name:  v1
# [ 1.  1.  1.]
# tensor_name:  v2
# [-1. -1. -1. -1. -1.]

# print only tensor v1 in checkpoint file
chkp.print_tensors_in_checkpoint_file("/tmp/model.ckpt", tensor_name='v1', all_tensors=False)

# tensor_name:  v1
# [ 1.  1.  1.]

# print only tensor v2 in checkpoint file
chkp.print_tensors_in_checkpoint_file("/tmp/model.ckpt", tensor_name='v2', all_tensors=False)

# tensor_name:  v2
# [-1. -1. -1. -1. -1.]

2. 第二种方法是使用 tensorflow/python/tools/inspect_checkpoint.py 中提到的tf.train.NewCheckpointReader类
 

from tensorflow.python import pywrap_tensorflow
checkpoint_path = os.path.join(model_dir, "model.ckpt")
reader = pywrap_tensorflow.NewCheckpointReader(checkpoint_path)
var_to_shape_map = reader.get_variable_to_shape_map()
for key in var_to_shape_map:
    print("tensor_name: ", key)
    print(reader.get_tensor(key)) # Remove this is you want to print only variable names

 

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值